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(57) ABSTRACT

Embodiments of display control based on dynamic user
interactions generally include capturing a plurality of tem-
porally sequential images of the user, or a body part or other
control object manipulated by the user, and computationally
analyzing the images to recognize a gesture performed by
the user. In some embodiments, a scale indicative of an
actual gesture distance traversed in performance of the
gesture is identified, and a movement or action is displayed
on the device based, at least in part, on a ratio between the
identified scale and the scale of the displayed movement. In
some embodiments, a degree of completion of the recog-
nized gesture is determined, and the display contents are
modified in accordance therewith. In some embodiments, a
dominant gesture is computationally determined from
among a plurality of user gestures, and an action displayed
on the device is based on the dominant gesture.
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DYNAMIC, FREE-SPACE USER
INTERACTIONS FOR MACHINE CONTROL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a Continuation-in-Part of U.S. patent
application Ser. No. 14/154,730, filed Jan. 14, 2014, which
claims priority to and the benefit of, and incorporates herein
by reference in their entireties, U.S. Provisional Application
Nos. 61/825,515 and 61/825,480, both filed on May 20,
2013; No. 61/873,351, filed on Sep. 3, 2013; No. 61/877,
641, filed on Sep. 13, 2013; No. 61/816,487, filed on Apr. 26,
2013; No. 61/824,691, filed on May 17, 2013; Nos. 61/752,
725, 61/752,731, and 61/752,733, all filed on Jan. 15, 2013;
No. 61/791,204, filed on Mar. 15, 2013; Nos. 61/808,959
and 61/808,984, both filed on Apr. 5, 2013; and No. 61/872,
538, filed on Aug. 30, 2013.

FIELD OF THE TECHNOLOGY DISCLOSED

Embodiments relate generally to machine-user interfaces,
and more specifically to the interpretation of free-space user
movements as control inputs.

BACKGROUND

Current computer systems typically include a graphic user
interface that can be navigated by a cursor, i.e., a graphic
element displayed on the screen and movable relative to
other screen content, and which serves to indicate a position
on the screen. The cursor is usually controlled by the user via
a computer mouse or touch pad. In some systems, the screen
itself doubles as an input device, allowing the user to select
and manipulate graphic user interface components by touch-
ing the screen where they are located. While touch may be
convenient and relatively intuitive for many users, touch is
not that accurate. Fingers are fat. The user’s fingers can
easily cover multiple links on a crowded display leading to
erroneous selection. Touch is also unforgiving—it requires
the user’s motions to be confined to specific areas of space.
For example, move one’s hand merely one key-width to the
right or left and type. Nonsense appears on the screen.

Mice, touch pads, and touch screens can be cumbersome
and inconvenient to use. Touch pads and touch screens
require the user to be in close physical proximity to the pad
(which is often integrated into a keyboard) or screen so as to
be able to reach them, which significantly restricts users’
range of motion while providing input to the system. Touch
is, moreover, not always reliably detected, sometimes neces-
sitating repeated motions across the pad or screen to effect
the input. Mice facilitate user input at some distance from
the computer and screen (determined by the length of the
connection cable or the range of the wireless connection
between computer and mouse), but require a flat surface
with suitable surface properties, or even a special mouse
pad, to function properly. Furthermore, prolonged use of a
mouse, in particular if it is positioned sub-optimally relative
to the user, can result in discomfort or even pain.

Accordingly, alternative input mechanisms that provide
users with the advantages of intuitive controls but free the
user from the many disadvantages of touch based control are
highly desirable.

SUMMARY

Aspects of the system and methods described herein
provide for improved machine interface and/or control by
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interpreting the positions, configurations, and/or motions of
one or more control objects (or portions thereof) in free
space within a field of view of an image-capture device. The
control object(s) may be or include a user’s body part(s)
such as, e.g., the user’s hand(s), finger(s), thumb(s), head,
etc.; a suitable hand-held pointing device such as a stylus,
wand, or some other inanimate object; or generally any
animate or inanimate object or object portion (or combina-
tions thereof) manipulated by the user for the purpose of
conveying information to the machine. In various embodi-
ments, the shapes, positions, and configurations of one or
more control objects are reconstructed in three dimensions
(e.g., based on a collection of two-dimensional images
corresponding to a set of cross-sections of the object), and
tracked as a function of time to discern motion. The shape,
configuration, position(s), and motion(s) of the control
object(s), when constituting user input to the machine, are
herein referred to as “gestures.”

In embodiments, the position, orientation, and/or motion
of one or more control objects are tracked relative to one or
more virtual control constructs (e.g., virtual control sur-
faces) defined in space (e.g., programmatically) to facilitate
determining whether an engagement gesture has occurred.
Engagement gestures can include engaging with a control
(e.g., selecting a button or switch), disengaging with a
control (e.g., releasing a button or switch), motions that do
not involve engagement with any control (e.g., motion that
is tracked by the system, possibly followed by a cursor,
and/or a single object in an application or the like), envi-
ronmental interactions (i.e., gestures to direct an environ-
ment rather than a specific control, such as scroll up/down),
special-purpose gestures (e.g., brighten/darken screen, vol-
ume control, etc.), as well as others or combinations thereof.

Engagement gestures can be mapped to one or more
controls of a machine or application executing on a machine,
or a control-less screen location, of a display device asso-
ciated with the machine under control. Embodiments pro-
vide for mapping of movements in three-dimensional (3D)
space conveying control and/or other information to zero,
one, or more controls. Controls can include imbedded con-
trols (e.g., sliders, buttons, and other control objects in an
application) or environmental-level controls (e.g., window-
ing controls, scrolls within a window, and other controls
affecting the control environment). In embodiments, con-
trols may be displayable using two-dimensional (2D) pre-
sentations (e.g., a traditional cursor symbol, cross-hairs,
icon, graphical representation of the control object, or other
displayable object) on, e.g., one or more display screens,
and/or 3D presentations using holography, projectors, or
other mechanisms for creating 3D presentations. Presenta-
tions may also be audible (e.g., mapped to sounds, or other
mechanisms for conveying audible information) and/or hap-
tic.

In an embodiment, determining whether motion informa-
tion defines an engagement gesture can include finding an
intersection (also referred to as a contact, pierce, or a “virtual
touch™) of motion of a control object with a virtual control
surface, whether actually detected or determined to be
imminent; dis-intersection (also referred to as a “pull back”
or “withdrawal”) of the control object with a virtual control
surface; a non-intersection—i.e., motion relative to a virtual
control surface (e.g., wave of a hand approximately parallel
to the virtual surface to “erase” a virtual chalk board); or
other types of identified motions relative to the virtual
control surface suited to defining gestures conveying infor-
mation to the machine. In an embodiment, determining
whether motion information defines an engagement gesture
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can include determining one or more engagement attributes
from the motion information about the control object. In an
embodiment, engagement attributes include motion attri-
butes (e.g., speed, acceleration, duration, distance, etc.),
gesture attributes (e.g., hand, two hands, tools, type, preci-
sion, etc.), other attributes and/or combinations thereof. In
an embodiment, determining whether motion information
defines an engagement gesture can include filtering motion
information to determine whether motion comprises an
engagement gesture. Filtering may be applied based upon
engagement attributes, characteristics of motion, position in
space, other criteria, and/or combinations thereof. Filtering
can enable identification of engagement gestures, discrimi-
nation of engagement gestures from extraneous motions,
discrimination of engagement gestures of differing types or
meanings, and so forth.

Various embodiments provide high detection sensitivity
for the user’s gestures to allow the user to accurately and
quickly (i.e., without any unnecessary delay time) control an
electronic device using gestures of a variety of types and
sensitivities (e.g., motions of from a few millimeters to over
a meter) and, in some embodiments, to control the relation-
ship between the physical span of a gesture and the resulting
displayed response. The user’s intent may be identified by,
for example, comparing the detected gesture against a set of
gesture primitives or other definitions that can be stored in
a database. FEach gesture primitive relates to a detected
characteristic or feature of one or more gestures. Primitives
can be coded, for example, as one or more vectors, scalars,
tensors, and so forth indicating information about an action,
command or other input, which is processed by the currently
running application—e.g., to invoke a corresponding
instruction or instruction sequence, which is thereupon
executed, or to provide a parameter value or other input data.
Because some gesture-recognition embodiments can pro-
vide high detection sensitivity, fine distinctions such as
relatively small movements, accelerations, decelerations,
velocities, and combinations thereof of a user’s body part
(e.g., a finger) or other control object can be accurately
detected and recognized, thereby allowing the user to accu-
rately interact with an electronic device and/or the applica-
tions executed and/or displayed thereon using a compara-
tively rich vocabulary of gestures.

In some embodiments, the gesture-recognition system
provides functionality for the user to statically or dynami-
cally adjust the relationship between the user’s actual
motion and a resulting response, e.g., object movement
displayed on the electronic device’s screen. In static opera-
tion, the user manually sets this sensitivity level by manipu-
lating a displayed slide switch or other icon using, for
example, the gesture-recognition system described herein.
In dynamic operation, the system automatically responds to
the distance between the user and the device, the nature of
the activity being displayed, the available physical space,
and/or the user’s own pattern of response (e.g., scaling the
response based on the volume of space in which the user’s
gestures appear to be confined). For example, when limited
space is available, the relationship may be adjusted, auto-
matically or manually by the user, to a ratio smaller than one
(e.g., 1:10), such that each unit (e.g., one millimeter) of the
user’s actual movement results in ten units (e.g., 10 pixels or
10 millimeters) of object movement displayed on the screen.
Similarly, when the user is relatively close to the electronic
device, the user may adjust (or the device, sensing the user’s
distance, may autonomously adjust) the relationship to a
ratio larger than one (e.g., 10:1) to compensate. Accordingly,
adjusting the ratio of the user’s actual motion to the resulting
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action (e.g., object movement) displayed on the screen
provides extra flexibility for the user to remotely command
the electric device and/or control the virtual environment
displayed thereon.

In some embodiments, the system enables or provides an
on-screen indicator showing in real time the degree of
gesture completion, providing feedback letting the user
know when a particular action is accomplished (e.g., a
control is selected or a certain control manipulation
effected). For example, the gesture-recognition system may
recognize the gesture by matching it to a database record that
includes multiple images, each of which is associated with
a degree (e.g., from 1% to 100%) of completion of the
performed gesture. The degree of completion of the per-
formed gesture is then rendered on the screen. For example,
as the user moves a finger closer to an electronic device to
perform a clicking or touching gesture, the device display
may show a hollow circular icon that a rendering application
gradually fills in with a color indicating how close the user’s
motion is to completing the gesture. When the user has fully
performed the clicking or touching gesture, the circle is
entirely filled in; this may result in, for example, labeling the
desired virtual object as a chosen object. The degree-of-
completion indicator thus enables the user to recognize the
exact moment when the virtual object is selected.

Some embodiments discern, in real time, a dominant
gesture from unrelated movements that may each qualify as
a gesture, and may output a signal indicative of the dominant
gesture. In various embodiments, the gesture-recognition
system identifies a user’s dominant gesture when more than
one gesture (e.g., an arm-waving gesture and a finger-flexing
gesture) is detected. For example, the gesture-recognition
system may computationally represent the waving gesture as
a waving trajectory and the finger-flexing gestures as five
separate (and smaller) trajectories. Each trajectory may be
converted into a vector along, for example, six Euler degrees
of freedom in Euler space. The vector with the largest
magnitude represents the dominant component of the motion
(e.g., waving in this case) and the rest of vectors may be
ignored. In some embodiments, a vector filter that can be
implemented using conventional filtering techniques is
applied to the multiple vectors to filter out the small vectors
and identify the dominant vector. This process may be
repetitive, iterating until one vector—the dominant compo-
nent of the motion—is identified. The identified dominant
component can then be used to manipulate the electronic
device or the applications thereof.

Accordingly, in one aspect, embodiments provide a
method of controlling a machine. The method includes
sensing a variation of position of at least one control object
using an imaging system; determining from the variation
one or more primitives describing at least one of a motion
made by the control object and the character of the control
object; comparing the primitive(s) to one or more templates
in a library of gesture templates; selecting from a result of
the comparing a set of templates of possible gestures cor-
responding to the one or more primitives; and providing at
least one of the set of templates of possible gestures as an
indication of a command to issue to a machine under control
responsive to the variation. The one or more control objects
may include a body part of a user.

In some embodiments, sensing a variation of position of
at least one control object using an imaging system com-
prises capturing a plurality of temporally sequential images
of one or more control objects manipulated by the user.
Determining from the variation one or more primitives
describing a motion made by the control object and/or the
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character of the control object may involve computationally
analyzing the images of the control object(s) to recognize a
gesture primitive including at least a portion of a trajectory
(trajectory portion) describing motion made by the control
object. The analysis may include identifying a scale asso-
ciated with the gesture primitive, the scale being indicative
of an actual distance traversed by the control object; the
scale may be identified, for instance, by comparing the
recognized gesture with records in a gesture database, which
may include a series of electronically stored records each
relating a gesture to an input parameter. The gestures may be
stored in the records as vectors. The analysis may further
include computationally determining a ratio between the
scale and a displayed movement corresponding to an action
to be displayed on a presentation device. The action may
then be displayed based on the ratio. The ratio may be
adjusted based on an external parameter such as, e.g., the
actual gesture distance, or the ratio of a pixel distance in the
captured images corresponding to performance of the ges-
ture to the size, in pixels, of the display screen. Analyzing
the images of the control object(s) may also include iden-
tifying a shape and position of the control object(s) in the
images, and reconstructing the position and the shape of the
control object(s) in 3D space based on correlations between
the identified shapes and positions of the control object(s) in
the images. The method may also involve defining a 3D
model of the control object(s), the position and shape of the
control object(s) may be reconstructed in 3D space based on
the 3D model. In some embodiments, analyzing the images
of the control object(s) further includes temporally combin-
ing the reconstructed positions and shapes of the control
object(s) in 3D space. In certain embodiments, determining
from the variation one or more primitives describing a
motion made by the control object and/or the character of the
control object comprises determining a position or motion of
the control object(s) relative to a virtual control construct.

Comparing the primitive(s) to one or more templates in a
library of gesture templates may include disassembling at
least a portion of a trajectory into a set of frequency
components (e.g., by applying Fourier analysis to the tra-
jectory portion as a signal over time to determine the set of
frequency components), and searching for the set of fre-
quency components among the template(s) stored in the
library. Alternatively or additionally, comparing the primi-
tive(s) to one or more templates in a library of gesture
templates may include disassembling at least a portion of a
trajectory into a set of frequency components, fitting a set of
one or more functions to a set of frequency components
representing at least a portion of a trajectory (e.g., fitting a
Gaussian function to the set of frequency components), and
searching for the set of functions among the template(s)
stored in the library. In yet another alternative implementa-
tion, comparing the primitive(s) to one or more templates in
a library of gesture templates may include disassembling at
least a portion of a trajectory into a set of time dependent
frequency components (e.g., by applying wavelet analysis to
the trajectory portion as a signal over time), and searching
for the set of time dependent frequency components among
the template(s) stored in the library. In yet another embodi-
ment, comparing the primitive(s) to one or more templates
in a library of gesture templates includes distorting at least
a portion of a trajectory based at least in part upon frequency
of motion components, and searching for the distorted
trajectory among the template(s) stored in the library.

In some embodiments, selecting from a result of the
comparison a set of templates of possible gestures corre-
sponding to the primitive(s) involves determining a similar-
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ity between the one or more primitives and the set of
templates by applying at least one similarity determiner
(such as a correlation, a convolution, and/or a dot product),
and providing the similarity as an indication of quality of
correspondence between the primitives and the set of tem-
plates. Selecting a set of templates may also include per-
forming at least one of scaling and shifting to at least one of
the primitives and the set of templates. Further, selecting a
set of templates may involve disassembling at least a portion
of a trajectory into a set of frequency components, filtering
the set of frequency components to remove motions asso-
ciated with jitter (e.g., by applying a Frenet-Serret filter),
and searching for the filtered set of frequency components
among the template(s) stored in the library.

In various embodiments, the method further includes
computationally determining a degree of completion of at
least one gesture, and moditying contents of a display in
accordance with the determined degree of completion; the
contents may include, e.g., an icon, a bar, a color gradient,
or a color brightness. Further, the degree of completion may
be compared to a threshold value, and a command to be
performed upon the degree of completion may be indicated.
Further, an action responsive to the gesture may be displayed
based on the degree of gesture completion and in accordance
with a physics simulation model and/or a motion model
(which may be constructed, e.g., based on a simulated
physical force, gravity, and/or a friction force).

In various embodiments, the method further includes
computationally determining a dominant gesture (e.g., by
filtering the plurality of gestures); and presenting an action
on a presentation device based on the dominant gesture. For
instance, each of the gestures may be computationally
represented as a trajectory, and each trajectory may be
computationally represented as a vector along six Euler
degrees of freedom in Euler space, the vector having a
largest magnitude being determined to be the dominant
gesture.

In some embodiments, providing at least one of the set of
templates of possible gestures as an indication of a com-
mand to issue to a machine under control responsive to the
variation comprises filtering one or more gestures based at
least in part upon one or more characteristics to determine a
set of gestures of interest, and providing the set of gestures
of'interest (e.g., via an API). The characteristics may include
the configuration, shape, and/or position of an object making
the gesture. Gestures may be associated with primitives in a
data structure.

In some embodiments, providing at least one of the set of
templates of possible gestures as an indication of a com-
mand to issue to a machine under control responsive to the
variation further includes detecting a conflict between a
template corresponding to a user-defined gesture and a
template corresponding to a predetermined gesture; and
applying a resolution determiner to resolve the conflict, e.g.,
by ignoring a predetermined gesture when the conflict is
between a predetermined gesture and a user-defined gesture
and/or by providing the user-defined gesture when the
conflict is between a predetermined gesture and a user-
defined gesture.

In another aspect, embodiments relate to a system
enabling dynamic user interactions with a device having a
display screen. The system includes at least one camera
oriented toward a field of view and at least one source to
direct illumination onto at least one control object in the field
of view. Further, the system includes a gesture database
comprising a series of electronically stored records, each of
the records relating a gesture to an input parameter, and an
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image analyzer coupled to the camera and the database. The
image analyzer is generally any suitable combination of
hardware and/or software for performing the functions of the
methods described above (including, e.g., image analysis
and gesture recognition). The image analyzer is configured
to operate the camera to capture a plurality of temporally
sequential images of the control object(s); analyze the
images of the control object(s) to recognize a gesture
performed by the user; compare the recognized gesture with
records in the gesture database to identity an input parameter
associated therewith, the input parameter corresponding to
an action for display on the display screen in accordance
with a ratio between an actual gesture distance traversed in
performance of the gesture and a displayed movement
corresponding to the action; and adjust the ratio based on an
external parameter. The external parameter may be the
actual gesture distance, or a ratio of a pixel distance in the
captured images corresponding to performance of the ges-
ture to a size, in pixels, of the display screen. The ratio may
be local to each gesture and may be stored in each gesture
record in the database, or the ratio may be global across all
gestures in the gesture database.

The image analyzer may be further configured to (i)
identify shapes and positions of the at least one control
object in the images and (ii) reconstruct a position and a
shape of the at least one control object in 3D space based on
correlations between the identified shapes and positions of
the at least one control object in the images. Further, the
image analyzer may be configured to define a 3D model of
the control object(s) and reconstruct the position and shape
of the control object(s) in 3D space based on the 3D model,
and/or to estimate a trajectory of the at least one control
object in 3D space. In some embodiment, the image analyzer
is further configured to determine a position or motion of the
control object(s) relative to a virtual control construct.

In various embodiments, a system enabling dynamic user
interactions with a device includes one or more cameras and
sources (e.g., light sources or sonic source) for direct illu-
mination (broadly understood, e.g., so as to include irradia-
tion with ultrasound) of one or more control objects; a
gesture database comprising a series of electronically stored
records, each specifying a gesture; and an image analyzer
coupled to the camera and the database and configured to
operate the camera to capture a plurality of images of the
control object(s); analyze the images to recognize a gesture;
compare the recognized gesture records in a gesture data-
base to identify the gesture; determine a degree of comple-
tion of the recognized gesture; and display an indicator (such
as an icon, a bar, a color gradient, or a color brightness) on
a screen of the device reflecting the determined degree of
completion. The image analyzer may be further configured
to determine whether the degree of completion is above a
predetermined threshold value and, if so, to cause the device
to take a completion-triggered action. Further, the image
analyzer may be further configured to display an action
responsive to the gesture in accordance with a physics
simulation model and based on the degree of gesture
completion. The displayed action may be further based on a
motion model. The image analyzer may be further config-
ured to determine a position or motion of the control
object(s) relative to a virtual control construct.

In various embodiments, a system of controlling dynamic
user interactions with a device one or more cameras and
(e.g., light or sonic) sources for direct illumination (again,
broadly understood) of one or more control object(s)
manipulated by the user in the field of view; a gesture
database comprising a series of electronically stored records
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each specifying a gesture; and an image analyzer coupled to
the camera and the database and configured to operate the
camera to capture a plurality of temporally sequential
images of the control object(s), analyze the images of the at
control object(s) to recognize a plurality of user gestures;
determine a dominant gesture; and display an action on the
device based on the dominant gesture.

The image analyzer may be further configured to deter-
mine the dominant gesture by filtering the plurality of
gestures (e.g., iteratively), and/or to represent each of the
gestures as a trajectory (e.g., as a vector along six Euler
degrees of freedom in Euler space, whose largest magnitude
may be determined by the dominant gesture). The image
analyzer may be further configured to determine a position
or motion of the at least one control object relative to a
virtual control construct.

Reference throughout this specification to “one example,”
“an example,” “one embodiment,” or “an embodiment”
means that a particular feature, structure, or characteristic
described in connection with the example is included in at
least one example of the present technology. Thus, the
occurrences of the phrases “in one example,” “in an
example,” “one embodiment,” or “an embodiment” in vari-
ous places throughout this specification are not necessarily
all referring to the same example. Furthermore, the particu-
lar features, structures, routines, steps, or characteristics may
be combined in any suitable manner in one or more
examples of the technology. The headings provided herein
are for convenience only and are not intended to limit or
interpret the scope or meaning of the claimed technology.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer
to like parts throughout the different views. Also, the draw-
ings are not necessarily to scale, with an emphasis instead
generally being placed upon illustrating the principles dis-
closed herein. In the following description, various embodi-
ments are described with reference to the following draw-
ings, in which:

FIG. 1A depicts an exemplary scenario for gesture-based
control of an electronic device in accordance with an
embodiment;

FIG. 1B is a flow chart illustrating a method for machine
control in accordance with an embodiment;

FIG. 2 illustrates the simultaneous execution of multiple
gestures in accordance with an embodiment;

FIGS. 3A and 3B depict on-screen indicators reflecting a
degree of completion of the user’s gesture in accordance
with an embodiment;

FIG. 3C is a flow chart illustrating a method of predicting
when the virtual object is selected by a user and subse-
quently timely manipulating the selected object in accor-
dance with an embodiment;

FIGS. 4A and 4B illustrate a dynamic adjustment of a
relationship between the user’s actual movements and the
resulting action displayed on the screen in accordance with
an embodiment; and

FIG. 4C is a flow chart illustrating a method of dynami-
cally adjusting the relationship between a user’s actual
motion and the resulting object movement displayed on the
electronic device’s screen in accordance with an embodi-
ment.

FIGS. 5A and 5B are perspective views of a planar virtual
surface construct and a control object in the disengaged and
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engaged modes, respectively, illustrating free-space gesture
control of a desktop computer in accordance with various
embodiments;

FIG. 5C-1 is a perspective view of a tablet connected to
a motion-capture device, illustrating free-space gesture con-
trol of the tablet in accordance with various embodiments;

FIG. 5C-2 is a perspective view of a tablet incorporating
a motion-capture device, illustrating free-space gesture con-
trol of the tablet in accordance with various embodiments;

FIG. 5D is a perspective view of a curved virtual surface
construct accommodating free-space gesture control of a
multi-screen computer system in accordance with various
embodiments;

FIG. 6 illustrates motion of a virtual surface construct
relative to a user’s finger in accordance with various
embodiments;

FIGS. 7A and 7B are plots of a virtual energy potential
and its derivative, respectively, in accordance with various
embodiments for updating the position of a virtual surface
construct;

FIGS. 7C-7E are plots of alternative virtual energy poten-
tials in accordance with various embodiments for updating
the position of a virtual surface construct;

FIGS. 8A, 8B, and 8B-1 are flow charts illustrating
methods for machine and/or user interface control in accor-
dance with various embodiments;

FIG. 9A is a schematic diagram of a system for capturing
image data and tracking a control object based thereon in
accordance with various embodiments;

FIG. 9B is a block diagram of a computer system for
gesture recognition and machine control in accordance with
various embodiments;

FIGS. 10A-10D illustrate a free-space compound gesture
in accordance with various embodiments;

FIGS. 11A and 11B illustrate, in two snap shots, a
zooming action performed by a user via a free-space gesture
in accordance with various embodiments;

FIGS. 12A and 12B illustrate, in two snap shots, a swiping
action performed by a user via a free-space gesture in
accordance with various embodiments; and

FIGS. 13A and 13B illustrate, in two snap shots, a
drawing action performed by a user via free-space hand
motions in accordance with various embodiments.

DETAILED DESCRIPTION

System and methods in accordance herewith generally
utilize information about the motion of a control object, such
as a user’s finger or a stylus, in three-dimensional space to
operate a user interface and/or components thereof based on
the motion information. A “control object” as used herein
with reference to an embodiment is generally any three-
dimensionally movable object or appendage with an asso-
ciated position and/or orientation (e.g., the orientation of its
longest axis) suitable for pointing at a certain location and/or
in a certain direction. Control objects include, e.g., hands,
fingers, feet, or other anatomical parts, as well as inanimate
objects such as pens, styluses, handheld controls, portions
thereof, and/or combinations thereof. Where a specific type
of control object, such as the user’s finger, is used hereinafter
for ease of illustration, it is to be understood that, unless
otherwise indicated or clear from context, any other type of
control object may be used as well.

Various embodiments take advantage of motion-capture
technology to track the motions of the control object in real
time (or near real time, i.e., sufficiently fast that any residual
lag between the control object and the system’s response is
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unnoticeable or practically insignificant). Other embodi-
ments may use synthetic motion data (e.g., generated by a
computer game) or stored motion data (e.g., previously
captured or generated). References to motions in “free
space” or “touchless” motions are used herein with reference
to an embodiment to distinguish motions tied to and/or
requiring physical contact of the moving object with a
physical surface to effect input; however, in some applica-
tions, the control object may contact a physical surface
ancillary to providing input, in such case the motion is still
considered a “free-space” motion. Further, in some embodi-
ments, the motion is tracked and analyzed relative to a
virtual control construct, such as a virtual surface, program-
matically defined in space and not necessarily corresponding
to a physical surface or object; intersection of the control
object with that virtual control construct defines a “virtual
touch.” The virtual surface may, in some instances, be
defined to co-reside with or be placed near a physical surface
(e.g., a virtual touch screen may be created by defining a
(substantially planar) virtual surface at or very near the
screen of a display (e.g., television, monitor, or the like); or
a virtual active table top may be created by defining a
(substantially planar) virtual surface at or very near a table
top convenient to the machine receiving the input).

FIG. 1A illustrates a gesture-recognition scenario in
accordance herewith. A user 100 interacts, via hand motions
(or motions of another control object 102), with an elec-
tronic device 104 and associated display 106. The user’s
gestures are captured by suitable motion-capture hardware
108, which may, for instance, include one or more cameras
that acquire a stream of images of the hand within a camera
field of view. A system 110 for gesture-based machine
control, implemented, e.g., on a computer, may analyze the
image stream to infer four-dimensional information about
the three-dimensional shape, configuration, position, and
orientation of the hand 102 (or other control object) and their
evolution in time, and compute suitable control signals to the
electronic device 104 based thereon. Meaningful control
input thus detected generally causes a response action by the
device 104 that is, typically, visually represented on the
display 106. For example, the user may, via the gestures,
manipulate controls or other virtual objects 112, such as
prototypes/models, blocks, spheres, or other shapes, buttons,
levers, cursors or other controls, in a virtual environment
displayed on the device’s screen 106, thereby remote inter-
acting with the user interface of the device 104. Alterna-
tively or additionally, the position and shape of the user’s
hand may be reconstructed and reproduced on the display
screen 106.

In more detail, the system 110 may include an image-
analysis module 114 that reconstructs the shapes and posi-
tions of the user’s hand in 3D space and in real time; suitable
systems and methods are described, e.g., U.S. Ser. Nos.
61/587,554, 13/414,485, and 61/724,091, filed on Jan. 17,
2012, Mar. 7, 2012, and Nov. 8, 2012, respectively, the entire
disclosures of which are hereby incorporated by reference.
Based on the reconstructed shape, configuration, position,
and orientation of the control object as a function of time,
object and motion attributes may be derived. For example,
the configuration of the user’s hand (or other control object)
may be characterized by a three-dimensional surface model
or simply the position of a few key points (e.g., the finger
tips) or other key parameters; and the trajectory of a gesture
may be characterized with one or more vectors and/or
scaling parameters (e.g., a normalized vector from the start
to the end point of the motion, a parameter indicating the
overall scale of the motion, and a parameter indicating any
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rotation of the control object during the motion). Other
parameters that can be associated with gesture primitives
include an acceleration, a deceleration, a velocity, a rota-
tional velocity, rotational acceleration, other parameters of
motion, parameters of appearance of the control object such
as color, apparent surface texture, temperature, other quali-
ties or quantities capable of being sensed and/or various
combinations thereof. In some embodiments, the raw motion
data is filtered prior to ascertaining motion attributes, e.g., in
order to eliminate unintended jitter.

A gesture-recognition module 116 takes the object and
motion attributes, or other information from the image-
analysis module, as input to identify gestures. In one
embodiment, the gesture-recognition module 116 compares
attributes of motion or character detected from imaging or
sensing a control object to gestures of a library of gesture
templates electronically stored in a database 120 (e.g., a
relational database, an object-oriented database, or any other
kind of database), which is implemented in the system 110,
the electronic device 104, or on an external storage system.
(As used herein, the term “electronically stored” includes
storage in volatile or non-volatile storage, the latter includ-
ing disks, Flash memory, etc., and extends to any compu-
tationally addressable storage media (including, for
example, optical storage).) For example, gesture primitives
may be stored as vectors, ie., mathematically specified
spatial trajectories, and the gesture information recorded
may include the relevant part of the user’s body making the
gesture; thus, similar trajectories executed by a user’s hand
and head may be stored in the database as different gestures,
so that an application can interpret them differently. In one
embodiment, one or more components of trajectory infor-
mation about a sensed gesture—and potentially other ges-
ture primitives—are mathematically compared against the
stored trajectories to find potential matches from which a
best match (or best matches) may be selected, and the
gesture is recognized as corresponding to the located data-
base entry based upon qualitative, statistical confidence
factors or other quantitative criteria indicating a degree of
match. For example, a confidence factor that exceeds a
threshold can indicate a potential match.

Accordingly, as illustrated in FIG. 1B, a method of
controlling a machine may involve sensing a variation of
position of one or more control objects, e.g., by processing
images acquired by motion-capture hardware 108 with an
image-analysis module 104 (150). From the sensed varia-
tion, one or more primitives describing a motion and/or the
character of the control object(s) may be determined (152),
and the primitives may then be compared against one or
more templates of a library (e.g., stored in a database 120)
of gesture templates (154). From the result of the compari-
son, a set of templates of possible gestures corresponding to
one or more primitives may be selected (156), and the
selected set of templates may be provided as an indication of
a command to be issued to a machine under control (such as,
e.g., device 104) (158).

One technique for comparison (154) comprises dynamic
time warping in which an observed trajectory information is
temporally distorted and the distortions compared against
stored gesture information (in a database for example). One
type of distortion comprises frequency distortion in which
the trajectory information is distorted for frequencies of
motions to yield a set of distorted trajectories. The set of
distorted trajectories can be searched for matches in the
database. Such frequency distortions enable finding gestures
made at different frequencies of motion than the template or
templates stored in the database.
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Another technique employs Fourier analysis to disas-
semble a portion of a trajectory (viewed as a signal over
time) into frequency components. The set of frequencies can
be searched for among the template(s) stored in the database.

A further technique employs wavelet analysis to disas-
semble a portion of a trajectory (viewed as a signal over
time) into time dependent frequency components. The set of
frequencies can be searched for among the template(s)
stored in the database.

In a yet further embodiment, Gaussian (or other) func-
tions can be fit to the set of frequencies representing the
trajectory portion to form a set of Gaussian functions at the
frequencies of the trajectory. The functions can be cepstra
envelopes in some embodiments. The functions fit to the
frequencies can be searched for among the template(s)
stored in the database.

In a still yet further embodiments, techniques for finding
similarity between two or more signal portions can facilitate
locating template(s) in the database corresponding to the
trajectory. For example, without limitation, correlation, con-
volution, sliding dot product, fixed dot product or combi-
nations thereof can be determined from the trajectory infor-
mation and one or more template(s) in the database to
determine a quality of match.

Of course, frequency components may be scaled and/or
shifted to facilitate finding appropriate templates in the
database corresponding to the gesture(s) to be recognized.
Further, in some embodiments, frequency filtering can be
applied to frequency components to facilitate finding tem-
plate(s) stored in the database. For example, filtering can be
used to eliminate jitter from shaking hands by eliminating
high frequency components from the trajectory spectrum. In
an embodiment, trajectories can be smoothed by applying
Frenet-Serret filtering techniques described in U.S. Provi-
sional Application No. 61/856,976, filed on Jul. 22, 2013 and
entitled “Filtering Motion Using Frenet-Serret Frames,” the
entire disclosure of which is hereby incorporated herein by
reference.

In brief, as is known in the art, Frenet-Serret formulas
describe the kinematic properties of a particle moving along
a continuous, differentiable curve in 3D space. This repre-
sentation of motion is better tailored to gestural movements
than the conventional Cartesian (X,y,z) representation.
Accordingly, embodiments convert captured motion from
Cartesian space to Frenet-Serret space by attaching Frenet-
Serret references frames to a plurality of locations on the
control object’s path. The Frenet-Serret frame consists of (i)
a tangent unit vector (T) that is tangent to the path, (ii) a
normal unit vector (N) that is the derivative of T with respect
to an arclength parameter of the path divided by its length,
and (iii) a binomial unit vector (B) that is the cross-product
of T and N. Alternatively, the tangent vector may be deter-
mined by normalizing a velocity vector if it is known at a
given location on the path. These unit vectors T, N, B
collectively form the orthonormal basis of the Frenet-Serret
frame in 3D space. The Frenet-Serret coordinate system is
constantly rotating as the object traverses the path, and so
may provide a more natural coordinate system for an
object’s trajectory than a strictly Cartesian system.

Once converted to Frenet-Serret space, the object’s
motions is filtered. The filtered data may then be converted
back to Cartesian space or another desired reference frame.
In one embodiment, filtering includes applying a smoothing
filter to a set of sequential unit vectors corresponding to the
tangent, normal, and/or binomial direction of the Frenet-
Serret frame. To some filters, each unit vector is specified by
one scalar value per dimension (i.e., by three scalar values
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in 3D) and filtered separately. The smoothing filter may be
applied to each set of scalar values, and the direction of the
vector may thereafter be reconstructed from its filtered
values, and the other two vectors of the frame at each point
may be recalculated accordingly. A 3D curve interpolation
method may then be applied to generate a 3D curve that
passes through the points in the given order, matching the
filtered Frenet-Serret frame at each point and representing
the object’s path of motion.

In various alternative embodiments, noise filtering may be
achieved by determining the rotation between consecutive
Frenet-Serret frames along the path using the Frenet-Serret
formulas describing curvature and torsion. The total rotation
of the Frenet-Serret frame is the combination of the rotations
of each of the three Frenet vectors described by the formulas
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is the derivative with respect to arclength, k is the curvature,
and 7 is the torsion of the curve. The two scalars K and T may
define the curvature and torsion of a 3D curve, in that the
curvature measures how sharply a curve is turning while
torsion measures the extent of its twist in 3D space. Alter-
natively, the curvature and torsion parameters may be cal-
culated directly from the derivative of best-fit curve func-
tions (i.e., velocity) using, for example, the equations

[V xdl

v

(Vxd)-d

K= = -
[V xd|

and T

The curvature and torsion parameters describing the twists
and turns of the Frenet-Serret frames in 3D space may be
filtered, and a smooth path depicting the object’s motion
may be constructed therefrom.

In some embodiments, additional filtering, modification
or smoothing may be applied to the resulting path, e.g.,
utilizing the principles of an Euler spiral (or similar con-
struct), to create aesthetically pleasing curves and transitions
before converting the coordinates back to Cartesian coordi-
nates. In one embodiment, the filtered Frenet-Serret path
(with or without modification by, for example, application of
the Euler spiral) may be used to better predict future motion
of the object. By removing or reducing any noise, inconsis-
tencies, or unintended motion in the path, the filtered path
may better predict a user’s intent in executing a gestural
motion. The predicted future motion along the Frenet-Serret
path is therefore based on past-detected motion and a
kinematic estimate of the user’s intent behind the motion.

Returning to the discussion of gestures stored in the
database, gesture templates can comprise one or more fre-
quencies, combinations of frequency and motion informa-
tion and/or characteristics of control objects (e.g., apparent
texture, color, size, combinations thereof). Templates can be
created to embody one or more components from taught
gestures using techniques described in U.S. Provisional
Application No. 61/872,538, filed on Nov. 20, 2013 and
entitled “Interactive Training Recognition of Free Space
Gestures for Interface and Control,” the entire disclosure of
which is hereby incorporated herein by reference. In brief, a
(typically computer-implemented) gesture training system
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may help application developers and/or end-users to define
their own gestures and/or customize gestures to their needs
and preferences—in other words, to go outside the realm of
pre-programmed, or “canned,” gestures. The gesture train-
ing system may interact with the user through normal
language, e.g., a series of questions, to better define the
action the user wants the system to be able to recognize. By
answering these questions in a pre-described setup process,
the user defines parameters and/or parameter ranges for the
respective gesture, thereby resolving ambiguities. Advanta-
geously, this approach affords reliable gesture recognition
without the algorithmic complexity normally associated
with the need for the computer to guess the answers; thus,
it helps reduce software complexity and cost. In one embodi-
ment, once the system has been trained to recognize a
particular gesture or action, it may create an object (e.g., a
file, data structure, etc.) for this gesture or action, facilitating
recognition of the gesture or action thereafter. The object
may be used by an application programming interface (API),
and may be employed by both developers and non-developer
users. In some embodiments, the data is shared or shareable
between developers and non-developer users, facilitating
collaboration and the like.

In some embodiment, gesture training is conversational,
interactive, and dynamic; based on the responses the user
gives, the next question, or the next parameter to be speci-
fied, may be selected. The questions may be presented to the
user in visual or audio format, e.g., as text displayed on the
computer screen or via speaker output. User responses may
likewise be given in various modes, e.g., via text input
through a keyboard, selection of graphic user-interface ele-
ments (e.g., using a mouse), voice commands, or, in some
instances, via basic gestures that the system is already
familiar to recognize. (For example, a “thumbs-up” or
“thumbs-down” gesture may be used to answer any yes-no
question.) Furthermore, as illustrated by way of example
below, certain questions elicit an action—specifically, per-
formance of an exemplary gesture (e.g., a typical gesture or
the extremes of a range of gestures)—rather than a verbal
response. In this case, the system may utilize, e.g., machine
learning approaches, as are well-known to persons of skill in
the art, to distill the relevant information from the camera
images or video stream capturing the action.

In one embodiment, vector(s) or other mathematical con-
structs representing portions of gesture(s) may be scaled so
that, for example, large and small arcs traced by a user’s
hand will be recognized as the same gesture (i.e., corre-
sponding to the same database record) but the gesture
recognition module will return both the identity and a value,
reflecting the scaling, for the gesture. The scale may corre-
spond to an actual gesture distance traversed in performance
of the gesture, or may be normalized to some canonical
distance. Comparison of a tracked motion against a gesture
template stored in the library facilitates determining a degree
of completion of the gesture (discussed in more detail
below), and can enable some embodiments to provide
increased accuracy with which detected motions are inter-
preted as control input.

In various embodiments, stored information about a ges-
ture may contain an input parameter corresponding to the
gesture (which may be scaled using the scaling value). If the
gesture-recognition module 116 is implemented as part of a
specific application (such as a game or controller logic for a
television), the stored gesture information may also contain
an input parameter corresponding to the gesture (which may
be scaled using the scaling value); in some systems where
the gesture-recognition module 116 is implemented as a
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utility available to multiple applications, this application-
specific parameter is omitted: when an application invokes
the gesture-recognition module 116, it interprets the identi-
fied gesture according in accordance with its own program-
ming.

In some embodiments, the gesture-recognition module
116 detects more than one gesture. Referring to FIG. 2, for
example, the user may perform an arm-waving gesture with
fingers flexing. The gesture-recognition module 112 detects
the waving and flexing gestures and records a waving
trajectory 200 and five flexing trajectories 202, 204, 206,
208, 210 for the five fingers. Each trajectory may be con-
verted into a vector along, for example, six Euler degrees of
freedom (X, v, z, roll, pitch and yaw) in Euler space (or other
mathematical formalism describing translation and rotation
in space as a time series of rotations and translations of one
or more points on the object. See e.g., Wikipedia “Euler
Angles” (http://en.wikipedia.org/wiki/Euler_angles). The
vector with the largest magnitude represents the dominant
component of the motion (e.g., waving in this case) and the
rest of vectors (e.g., corresponding to finger flexing) may be
ignored. In one embodiment, a vector filter that can be
implemented using any of a variety of filtering techniques is
applied to the multiple vectors to filter out less relevant
vectors, thereby enabling the dominant vector to be identi-
fied. This process may be repetitive, iterating until one
vector—the dominant component of the motion—is identi-
fied. In some embodiments, a new filter is generated or
initiated every time new gestures are detected. Alternatively
to using simply the most prominent motion corresponding to
the largest vector, gestures may be filtered based on context
and/or predetermined classifications. For example, in appli-
cation contexts where user input is based on subtle finger
motions and configurations of the hand, such as virtual
typing or manipulation of complex virtual controls, larger
motions of the hand as a whole may be ignored. Thus, the
user may, for instance, pace around the monitored region
while gesturing, and the overall translational movement will
have no effect on the input provided to the electronic device.

With renewed reference to FIG. 1A, the gestures identi-
fied by the gesture-recognition module 116 may be provided
as input to a device and user-interface control module 118,
which maps them to control signals. The control module 118
may be specific and/or customized to the electronic device
104 or application executed thereon, or provide standard
signals via an application-programming-interface that are
thereafter further interpreted by the electronic device 104.
For example, the control module 118 may map gestures onto
the control inputs available with a computer mouse (e.g.,
left-click, right-click, double-click, translation) or keyboard
(i.e., the different keys), thus allowing mouse and/or key-
board operation to be emulated by free-space gestures. Of
course, free-space gesture recognition in accordance here-
with is not limited to traditional user-input actions, but
facilitates defining entirely new and distinct actions (e.g., a
“trigger-pulling” gesture, kicks and other gestures per-
formed by body parts other than the hand, etc.) with asso-
ciated special meanings and interpretations. Further, a ges-
ture need not correspond to a particular discrete input, but
may provide one or more input parameters along a con-
tinuum (e.g., an angle by which a virtual dial is to be rotated
or a distance by which a curser is to be moved). The control
module 118 may also translate the gesture into a graphic
representation thereof (e.g., a video stream showing the
motions of a rendition of the control object 102) for display
on the screen 106.
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Gesture recognition and/or interpretation as control input
may be context-dependent, i.e., the same motion may cor-
respond to different control inputs, even for the same elec-
tronic device 104 under control, depending, e.g., on the
application, application environment, window, or menu that
is currently active; user settings and preferences; the pres-
ence or absence and the configuration or state of motion of
one or more additional control objects; the motion relative to
one or more virtual constructs (as discussed in detail below);
and/or the recent history of control input. For example, a
particular gesture performed with one hand may affect the
interpretation of a gesture performed simultaneously with
another hand; a finger swipe parallel to the screen may have
different meanings in different operational modes as distin-
guished based on whether the finger pierces a virtual control
surface; and a clicking gesture that normally causes selec-
tion of a virtual control may have a different effect if made
during the course of a video game.

Of course, the functionality of the image-analysis module
114, gesture-recognition module 116, and device and user-
interface control module 118 may be organized, grouped,
and distributed among various devices and between the
electronic device 104 and the gesture-based machine-control
system 110 in many different ways, and the depiction of FIG.
1A is not to be understood as limiting. For example, the
gesture-recognition module 116 may send signals indicative
of the identified gesture (and, if applicable, a scaling param-
eter or other parameters associated with the gesture) directly
to the electronic device 104, which may implement the
user-interface control functionality. That is, the device 104
may treat the identified gesture and the scaling value as
control input and assign an input parameter value (or values
for multiple parameters) thereto; the input parameter(s) may
then be used by applications executing on the electronic
device 104, facilitating gesture-based user interactions
therewith. In various embodiments, the system 100 and the
device 104 are integrated in the same machine. For example,
the device 104 may be a general-purpose computer, and the
modules 114, 116, 118 may be implemented thereon as one
or more software programs. Alternatively, part of the sys-
tem’s functionality may be integrated with the motion-
capture hardware. A stand-alone device may, for instance,
include both the cameras for capturing images and the
computational facility for detecting, reconstructing, and
tracking control objects based thereon, and raw data indica-
tive of the detected motions may then be further processed
and interpreted by a gesture-recognition module executing
on a separate machine.

To further illustrate gesture-based machine control in
accordance herewith, consider the following exemplary user
interaction with an electronic device 104: To initiate com-
munication with the electronic device 104, the user may first
move a hand in a repetitive or distinctive way (e.g., per-
forming a waving hand gesture). Upon detecting and rec-
ognizing this hand gesture, the gesture-recognition module
116 transmits a signal indicative thereof to the electronic
device 104, which, in response, renders an appropriate
display (e.g., a control panel 126). The user then performs
another gesture (e.g., moving her hand in an “up” or “down”
direction). The gesture-recognition module 116 detects and
identifies the gesture and a scale associated therewith, and
transmits this data to the electronic device 104; the device
104, in turn, interprets this information as an input parameter
(as if the user had pressed a button on a remote control
device) indicative of a desired action, enabling the user to
manipulate the data displayed on the control panel 126 (such
as selecting a channel of interest, adjusting the audio sound,
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or varying the brightness of the screen). In various embodi-
ments, the device 104 connects to a source of video games
(e.g., a video game console or CD or web-based video
game); the user can perform various gestures to remotely
interact with the virtual objects 112 in the virtual environ-
ment (video game). The detected gestures and scales are
provided as input parameters to the currently running game,
which interprets them and takes context-appropriate action,
i.e., generates screen displays responsive to the gestures.

In various embodiments, after the user successfully ini-
tiates communications with the electronic device 104 via the
gesture-based machine-control system 110, the system 110
generates a form of feedback (e.g., visual, aural, haptic or
other sensory feedback or combinations thereof) for presen-
tation on appropriate presentation mechanism(s). In the
example embodiment illustrated by FIG. 1A, feedback com-
prises cursor 122 (e.g., an arrow, circle, cross hair, or other
symbol) or graphic representation 124 (hereinafter also
deemed encompassed with “cursor”) of the detected body
part (e.g., a hand) or other control object and displays it on
the device’s screen 106. In one embodiment, the system 110
coherently locks the movement of the cursor 122 on the
screen 104 to follow the actual motion of the user’s gesture.
For example, when the user moves a hand 102 in the upward
direction, the displayed cursor 122 also moves upward on
the display screen 106 in response. As a result, the motion
of the cursor 122 directly maps user gestures to displayed
content such that, for example, the user’s hand 102 and the
cursor 122 behave like a PC mouse and a cursor on the
monitor, respectively. This allows the user to evaluate the
relationship between actual physical gesture movement and
the resulting actions taking place on the screen 106, e.g.,
movement of virtual objects 112 displayed thereon. In
mapping movements of the control object to cursor motions,
the absolute position of the control object is not always
important; rather, relative position and/or directions of
movement may control the on-screen action (e.g., the move-
ment of cursor 122). Such directions, however, are typically
(although not necessarily) measured relative to the orienta-
tion of the screen 102 (e.g., such that movement to the right
when facing the screen results in on-screen cursor move-
ment to the right). Further, in some embodiments, the user
can control the position of a cursor and/or other object on the
screen by pointing directly at the desired screen location,
e.g., with an index finger.

Thus, mapping movements of the control object to those
of the cursor on-screen can be accomplished in different
ways. In some embodiments, the position and orientation of
the control object—e.g., a stretched-out index finger—
relative to the screen are used to compute the intersection of
a straight line through the axis of the finger with the screen,
and a cursor symbol is displayed at the point of intersection.
If the range of motion causes the intersection point to move
outside the boundaries of the screen, the intersection with a
(virtual) plane through the screen may be used, and the
cursor motions may be re-scaled or translated, relative to the
finger motions, to remain within the screen boundaries.
Alternatively to extrapolating the finger towards the screen,
the position of the finger (or control object) tip may be
projected perpendicularly onto the screen; in this embodi-
ment, the control object orientation may be disregarded. As
will be readily apparent to one of skill in the art, many other
ways of mapping the control object position and/or orien-
tation onto a screen location may, in principle, be used; a
particular mapping may be selected based on considerations
such as, without limitation, the requisite amount of infor-
mation about the control object, the intuitiveness of the
mapping to the user, and the complexity of the computation.
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For example, in some embodiments, the mapping is based
on intersections with or projections onto a (virtual) plane
defined relative to the camera or other image-capture hard-
ware, under the assumption that the screen is located within
that plane (which is correct, at least approximately, if the
camera is correctly aligned relative to the screen), whereas,
in other embodiments, the screen location relative to the
camera is established via explicit calibration (e.g., based on
camera images including the screen).

In various embodiments, certain gestures have an associ-
ated threshold of completion that needs to be exceeded
before the gesture is recognized as such; this completion
requirement may serve to enhance the reliability of gesture
recognition, in particular, the elimination of false positives
in gesture detection. As an example, consider the selection
by the user of an on-screen virtual object, using a “finger
click” in free space. With reference to FIG. 3 A, the user may
first move the displayed cursor 310, via suitable hand
motions or other gestures, to a screen position where it at
least partially overlaps with a displayed virtual object 312 of
interest. Thereafter, the user may perform another gesture,
e.g., “finger clicking,” to select the desired object 312. To
label the object 312 as a user-selected object, the finger
motion may be required to satisfy a predetermined threshold
(e.g., 95%) of completion of the gesture; this value may be
stored in the database 120 or implemented by the application
currently running on the electronic device 316. For example,
a completion of a “clicking” gesture may require the user’s
finger to move a distance of five centimeters; upon detecting
a finger movement of one centimeter, the gesture-recogni-
tion system 314 (which may include, e.g., suitable motion-
capture hardware 108 for acquiring images and an associ-
ated computational system 110 for processing the images)
recognizes the gesture by matching it to a database record,
and determines a degree (in this case, 20%) of completion of
the recognized gesture. In one embodiment, each gesture in
the database includes multiple images or vectors each of
which is associated with a degree (e.g., from 1% to 100%)
of completion of the performed gesture; in other embodi-
ments, the degree of completion is computed by interpola-
tion or simple comparison of the observed vector to the
stored vector.

The degree of completion of the performed gesture (e.g.,
how much the user has moved her finger or hand) may be
rendered on the screen, and indeed, the assessment of
gestural completion may be handled by the rendering appli-
cation running on the device 316 rather than by the gesture-
recognition system 314. For example, the electronic device
316 may display a hollow circular icon 318 that the render-
ing application gradually fills in with a color or multiple
colors as the device receives simple motion (position-
change) signals from the gesture-recognition system 314 as
the user moves a finger closer to the device 316, while
performing a clicking or “touching” gesture. The degree to
which the circle is filled indicates how close the user’s
motion is to completing the gesture (or how far the user’s
finger has moved away from its original location). When the
user fully performs the clicking or touching gesture, the
circle is entirely filled in; this may result in, for example,
labeling the virtual object 312 as a chosen object.

In some embodiments, the device temporarily displays a
second indication (e.g., changing the shape, color or bright-
ness of the indicator) to confirm the object selection. The
indication of the degree of gesture completion and/or the
confirming indication of object selection thus enable the user
to easily predict the exact moment when the virtual object is
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selected; accordingly, the user can subsequently manipulate
the selected object on-screen in an intuitive fashion.
Although the discussion herein focuses on filling of the
hollow circle 318, embodiments can include virtually any
type of representation displayed on the screen that can
indicate the completion of the performed gesture. For
example, a hollow bar 320 progressively filled in by color,
a gradient of color 322, the brightness of a color or any
suitable indicator may be used to illustrate a degree of
gesture completion performed by the user.

The gesture-recognition system 314 detects and identifies
the user’s gestures based on the shapes and positions of the
gesturing part of the user’s body in the captured 2D images.
A 3D image of the gesture can be reconstructed by analyzing
the temporal correlations of the identified shapes and posi-
tions of the user’s gesturing body part in consecutively
acquired images. Because the reconstructed 3D image can
accurately detect and recognize all types of gestures (e.g.,
moving a finger a distance of less than one centimeter to
greater than a meter) in real time, embodiments of the
gesture-recognition system 314 provides high detection sen-
sitivity as well as selectivity. In various embodiments, once
the gesture is recognized and the instruction associated
therewith is identified, the gesture-recognition system 314
transmits signals to the device 316 to activate an on-screen
indicator displaying a degree of completion of the user’s
gesture. The on-screen indicator provides feedback that
allows the user to control the electronic device 316 and/or
manipulate the displayed virtual objects 312 using various
degrees of movement. For example, the user gesture may be
as large as a body length jump or as small as a finger
clicking.

In one embodiment, once the object 312 is labeled as a
chosen object, the gesture-recognition system 314 locks the
object 312 together with the cursor 310 on the screen to
reflect the user’s subsequently performed movement. For
example, when the user moves a hand in the downward
direction, the displayed cursor 310 and the selected virtual
object 312 also move downward together on the display
screen in response. Again, this allows the user to accurately
manipulate the virtual objects 312 in the virtual environ-
ment.

In another embodiment, when a virtual object is labeled as
a chosen item, the user’s subsequent movement is converted
computationally to a simulated physical force applied to the
selected object. Referring to FIG. 3B, the user may, for
example, first move one finger forward for a distance of one
centimeter to complete the selection of the virtual object
330; this selection can be confirmed by the hollow circle 332
displayed on the screen being entirely filled in. The user may
then move the finger forward for another centimeter. Upon
detecting such movement, the gesture-recognition system
314 may convert the motion to a simulated force; the force
may be converted based on a conventional physics simula-
tion model, the degree of body movement, the mass and
moving velocity of the body part, gravity, and/or any other
relevant parameters. The application running on the device
316, which generates the virtual object 330, responds to the
force data by rendering the simulated behavior of the virtual
object 330 under the influence of the force, e.g., as computed
based on a motion model which includes the Newtonian
physical principles. For example, if the user’s movement is
relatively small within a predetermined range (e.g., less than
one centimeter) and/or relatively slow, the converted force
deforms the shape of the selected object 330; if, however, the
user’s movement exceeds the determined range (i.e., more
than 10 centimeters) or a threshold velocity, the device 316
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treats the converted force as large enough (i.e., larger than
the simulated static friction force) to move the selected
object 330. The motion of the object 330 in response to such
push forces is simulated by the rendering application of the
device 316 based on the motion model; the position of the
object on the screen is then updated to reflect such motion.
The rendering application may take other actions with
respect to the virtual object 330, e.g., stretching, bending, or
operating mechanical controls over buttons, levers, hinges,
handles, etc. As a result, the simulated force replicates the
effect of equivalent forces in the real world and makes the
interaction predictable and realistic for the user.

It should be stressed that the foregoing functional division
between the gesture-recognition system 314 and the render-
ing application running on the device 316 is exemplary only;
in some embodiments the two entities are more tightly
coupled or even unified so that, rather than simply passing
generic force data to the application, the gesture-recognition
system 314 has world knowledge of the environment as
rendered on the device 316. In this way, the gesture-
recognition system 314 can apply object-specific knowledge
(e.g., friction forces and inertia) to the force data so that the
physical effects of user movements on the rendered objects
are computed directly (rather than based on generic force
data generated by the gesture-recognition system 314 and
processed on an object-by-object basis by the device 316).
Moreover, in various embodiments, the motion-capture and
gesture-recognition functionality is implemented on the
device 316, e.g., as a separate application that provides
gesture information to the rendering application (such as a
game) running on the device 316, or, as discussed above, as
a module integrated within the rendering application (e.g., a
game application may be provided with suitable motion-
capture and gesture-recognition functionality). The division
of computational responsibility between different hardware
devices as well as between hardware and software represents
a design choice.

A representative method 350 for supporting a user’s
interaction with an electronic device by means of free-space
gestures, and particularly to monitor the degree of gesture
completion so that on-screen action can be deferred until the
gesture is finished, is shown in FIG. 3C. The user first
initiates communications with an electronic device by per-
forming a gesture (352). This gesture is detected by a
motion-capture device and associate gesture-based machine-
control system (354). The gesture-recognition module of the
system compares the recognized gesture with gesture
records stored in a database, both to identify the gesture and
to assess, in real time, a degree of completion (356). The
system then transmits signals to the electronic device (358).
(As noted earlier, the degree-of-completion functionality
may be implemented on the device rather than by the
gesture-recognition module, with the latter system merely
providing movement-tracking data.) Based on the signals,
the electronic device displays an on-screen indicator reflect-
ing a degree of completion of the user’s gesture (360). If the
degree of completion is above a threshold value (e.g., 95%),
the electronic device and/or the virtual objects displayed on
the screen are then timely manipulated by the user based on
the current gesture and/or subsequently performed gestures
(362, 364).

Referring to FIG. 4A, in one embodiment, the displayed
motion 410 of the object 412 on the screen 414 is determined
based on the absolute spatial displacement associated with
the user’s actual movement. For example, the user may first
slide his hand 416 to the right by one centimeter (as
indicated by the arrow 418). Upon detecting and recognizing
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this hand gesture, the gesture-recognition module transmits
a signal to the electronic device 422 indicative of the
movement; the device 422 interprets this signal as an input
parameter and, in response, takes action to move (i.e., to
render as moving) the cursor or virtual object 412 in the
same direction by, for example, one hundred pixels on the
screen 414. The relationship between the user’s physical
movement and the rendered movement can be set by the user
by, for example, altering the scaling factor stored by the
gesture-recognition module (e.g., in the database) for the
associated gesture. If the gesture-recognition module is
integrated with a rendering application, the user can make
this change with gestures. For example, the user may specify
a larger on-screen movement (i.e., a movement traversing a
large number of pixels) of the cursor or object 412 in
response to a given hand movement. To do so, the user may
first activate a ratio control panel 424 displayed on the
screen by performing a distinct gesture. The control panel
424 may be rendered, for example, as a slide bar, a circular
scale, or in any other suitable form. The user subsequently
performs another gesture, suited to the type of the scale
control panel 424, to adjust the ratio. For example, if the
scale control panel is a slide bar, the user slides her finger to
vary the ratio. In another embodiment, no scale control panel
is displayed on the screen; the ratio is, instead, adjusted
based on the user’s subsequent gestures. For example, the
user may increase the scale ratio by opening her first or
moving her thumb and index finger apart and reduce the
scale ratio by closing her first or moving her index finger
towards the thumb. Although the discussion herein focuses
on hand or finger gestures for purposes of illustration,
embodiments can process virtually any gesture performed
by any particular part of the human body. Any suitable
gesture for communications between the user and the elec-
tronic device may be used.

In still other embodiments, the ratio adjustment is
achieved using a conventional remote-control device, which
the user controls by pushing buttons, or using a wireless
device such as a tablet or smart phone. A different scaling
ratio may be associated with each gesture and stored in
association therewith e.g., as part of the specific gesture
record in the database (i.e., the scaling ration may be local
and potentially differ between gestures). Alternatively, the
scaling ratio may be applicable to several or all gestures
stored in the gesture database (i.e., the scaling ratio may be
global and shared among several or all of the gestures).

Alternatively, the relationship between physical and on-
screen movements may be determined, at least in part, based
on the characteristics of the display and/or the rendered
environment. For example, with reference to FIG. 4B, the
acquired (camera) image 430 may be stored as a matrix of
MxN pixels, each specifying the detected light intensity or
brightness, and the (rendered) frame of the display screen of
the electronic device 422 may have XxY pixels. When the
user makes a hand-waving gesture 420 that results in a
horizontal displacement by m pixels and a vertical displace-
ment by n pixels in the camera images, the relative hori-
zontal and vertical displacements are set as m/M, n/N,
respectively, for scaling purposes. In response to this hand
gesture, the cursor or object 412 on the display screen 414
may be moved by x pixels horizontally and by y pixels
vertically, where x and y are determined as x=m/MxX,
y=1/NxY, respectively, in the simplest case. But even to
display essentially unitary (1:1) scaling adjusted for the
relative sizes of the user’s environment and the display
screen, account is generally taken of the camera position and
distance from the user, focal length, resolution of the image
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sensor, viewing angle, etc., and as a result the quantities X
and y are multiplied by a constant that results in an essen-
tially affine mapping from “user space” to the rendered
image. Once again, the constant may be adjusted to amplify
or decrease on-screen movement responsiveness. Such ren-
dition of user interactions with the virtual object 412 on the
display screen may provide the user with a realistic feeling
while she moves the object in the virtual environment.

The scaling relationship between the user’s actual move-
ment and the resulting action taking place on the display
screen may result in performance challenges, especially
when limited space is available to the user. For example,
when two family members sit together on a couch playing a
video game displayed on a TV, each user’s effective range of
motion is limited by the presence of the other user. Accord-
ingly, the scaling factor may be altered to reflect a restricted
range of motion, so that small physical movements corre-
spond to larger on-screen movements. This can take place
automatically upon detection, by the machine-control sys-
tem, of multiple adjacent users. The scaling ratio may also
depend, in various embodiments, on the rendered content of
the screen. For example, in a busy rendered environment
with many objects, a small scaling ratio may be desired to
allow the user to navigate with precision; whereas for
simpler or more open environments, such as where the user
pretends to throw a ball or swing a golf club and the detected
action is rendered on the screen, a large scaling ratio may be
preferred.

As noted above, the proper relationship between the
user’s movement and the corresponding motion displayed
on the screen may depend on the user’s position relative to
the recording camera. For example, the ratio of the user’s
actual movement m to the pixel size M in the captured image
may depend on the viewing angle of the camera as well as
the distance between the camera and the user. If the viewing
angle is wide or the user is at a distance far away from the
camera, the detected relative movement of the user’s gesture
(i.e., m/M) is smaller than it would be if the viewing angle
was not so wide or the user was closer to the camera.
Accordingly, in the former case, the virtual object moves too
little on the display in response to a gesture, whereas in the
latter case the virtual object moves too far. In various
embodiments, the ratio of the user’s actual movement to the
corresponding movement displayed on the screen is auto-
matically coarsely adjusted based on, for example, the
distance between the user and the camera (which may be
tracked by ranging); this allows the user to move toward or
away from the camera without disrupting the intuitive feel
that the user has acquired for the relationship between actual
and rendered movements.

In various embodiments, when the gesture is recognized
but the detected user movement is minuscule (i.e., below a
predetermined threshold), the gesture-based machine-con-
trol system switches from a low-sensitivity detection mode
to a high-sensitivity mode where a 3D image of the hand
gesture is accurately reconstructed based on the acquired 2D
images and/or a 3D model. Because the high-sensitivity
system can accurately detect small movements (e.g., less
than a few millimeters) performed by a small part of the
body, e.g., a finger, the ratio of the user’s actual movement
to the resulting movement displayed on the screen may be
adjusted within a large range, for example, between 1000:1
and 1:1000.

A representative method 450 for a user to dynamically
adjust the relationship between her actual motion and the
resulting object movement displayed on the electronic
device’s screen in accordance with embodiments is shown in
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FIG. 4C. First, the user initiates communications with an
electronic device by performing a gesture (452). The gesture
is detected and recognized by a motion-capture device and
associated gesture-based machine control system (454). An
instruction associated with the gesture is identified (e.g., by
a gesture-recognition module of the system) by comparing
the detected gesture with gestures stored in a database (456).
Then, the ratio of the user’s actual movement to a resulting
virtual action displayed on the screen is determined based on
the instruction (458). Signals indicative of the instruction are
then transmitted to the electronic device (460). Finally, upon
receiving the signals, the electronic device displays a virtual
action on the screen based on the determined ratio and a
user’s subsequent movement (462).

As discussed above with respect to FIG. 1A and in more
detail below with respect to FIGS. 9A and 9B, a gesture-
recognition system (e.g., the system illustrated in FIG. 1A,
which includes motion-capture hardware 108 and an asso-
ciated computational system 110) captures images of an
object, such as a hand 102, e.g., using one or more cameras;
the object may be illuminated with one or more light sources
108, 110. An image-analysis module 114 detects the object
in the images, and a gesture-recognition module 116 detects
a gesture made using the object. Once detected, the gesture
is input to an electronic device 104, which may use the
gesture in a variety of ways (such as in manipulating a
virtual object). Many different kinds of gestures may be
detected, however, and an application running on the elec-
tronic device may not use or need every detected gesture.
The sending of the unused gestures to the application may
create unnecessary complexity in the application and/or
consume unnecessary bandwidth over the link between the
application and the gesture-recognition system.

In one embodiment, only a subset of the gestures captured
by the gesture-recognition system is sent to the application
running on the electronic device. The recognized gestures
may be sent from the gesture-recognition module 116 to a
gesture filter 130, as illustrated in FIG. 1A, and filtered
based on one or more characteristics of the gestures. Ges-
tures that pass the criteria of the filter 130 are sent to the
application, and gestures that do not pass are not sent and/or
deleted. The gesture filter 130 may be implemented as a
separate program module, however this is not required; the
functionality of the filter 130 may be wholly or partially
incorporated into the gesture-recognition module 116. In
various embodiments, the gesture-recognition module 116
recognizes all detected gestures regardless of the settings of
the filter 130 or recognizes a subset of detected gestures in
accordance with the settings of the filter 130.

The characteristics of the filter 130 may be defined to suit
a particular application or group of applications. In various
embodiments, the features may be received from a menu
interface, read from a command file or configuration file,
communicated via an AP, or any other similar method. The
filter 130 may include sets of preconfigured characteristics
and allow a user or application to select one of the sets.
Examples of filter characteristics include the path that a
gesture makes (the filter 130 may pass gestures having only
relatively straight paths, for example, and block gestures
having curvilinear paths); the velocity of a gesture (the filter
130 may pass gestures having high velocities, for example,
and block gestures having low velocities); and/or the direc-
tion of a gesture (the filter may pass gestures having left-
right motions, for example, and block gestures having
forward-back motions). Further filter characteristics may be
based on the configuration, shape, or disposition of the
object making the gesture; for example, the filter 130 may
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pass only gestures made using a hand pointing with a certain
finger (e.g., a third finger), a hand making a fist, or an open
hand. The filter 130 may further pass only gestures made
using a thumbs-up or thumbs-down gesture, for example for
a voting application.

The filtering performed by the filter 130 may be imple-
mented in accordance with any method known in the art. In
one embodiment, gestures detected by the gesture-recogni-
tion module 116 are assigned a set of one or more charac-
teristics (e.g., velocity or path) and the gestures and char-
acteristics are maintained in a data structure. The filter 130
detects which of the assigned characteristics meet its filter
characteristics and passes the gestures associated with those
characteristics. The gestures that pass the filter 130 may be
returned to one or more applications via an API or via a
similar method. The gestures may, instead or in addition, be
displayed on the display 106 and/or shown in a menu (for,
e.g., a live teaching IF application).

As described above, the gesture-recognition module 116
compares a detected motion of an object to a library of
known gestures and, if there is a match, returns the matching
gesture. In one embodiment, a user, programmer, application
developer, or other person supplements, changes, or replaces
the known gestures with user-defined gestures. If the ges-
ture-recognition module 116 recognizes a user-defined ges-
ture, it returns the gesture to one or more programs via an
API (or similar method). In one embodiment, still with
reference again to FIG. 1A, a gesture-settings module 132
screens motions for gestures based on an input of charac-
teristics defining a gesture and returns a set of gestures
having matching characteristics.

The user-defined characteristics may include any number
of a variety of different attributes of a gesture. For example,
the characteristics may include a path of a gesture (e.g.,
relatively straight, curvilinear; circle vs. swipe); parameters
of a gesture (e.g., a minimum or maximum length); spatial
properties of the gesture (e.g., a region of space in which the
gesture occurs); temporal properties of the gesture (e.g., a
minimum or maximum duration of the gesture); and/or a
velocity of the gesture (e.g., a minimum or maximum
velocity). Embodiments are not limited to only these attri-
butes, however.

A conflict between a user-defined gesture and a predeter-
mined gesture may be resolved in any number of ways. A
programmer may, for example, specify that a predetermined
gesture should be ignored. In another embodiment, a user-
defined gesture is given precedence over a predetermined
gesture such that, if a gesture matches both, the user-defined
gesture is returned.

In various embodiments, gestures are interpreted based on
their location and orientation relative to a virtual control
construct. A “virtual control construct” as used herein with
reference to an embodiment denotes a geometric locus
defined (e.g., programmatically) in space and useful in
conjunction with a control object, but not corresponding to
a physical object; its purpose is to discriminate between
different operational modes of the control object (and/or a
user-interface element controlled therewith, such as a cur-
sor) based on whether the control object intersects the virtual
control construct. The virtual control construct, in turn, may
be, e.g., a virtual surface construct (a plane oriented relative
to a tracked orientation of the control object or an orientation
of a screen displaying the user interface) or a point along a
line or line segment extending from the tip of the control
object. The term “intersect” is herein used broadly with
reference to an embodiment to denote any instance in which
the control object, which is an extended object, has at least
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one point in common with the virtual control construct and,
in the case of an extended virtual control construct such as
a line or two-dimensional surface, is not parallel thereto.
This includes “touching” as an extreme case, but typically
involves that portions of the control object fall on both sides
of the virtual control construct.

In an embodiment and by way of example, one or more
virtual control constructs can be defined computationally
(e.g., programmatically using a computer or other intelligent
machinery) based upon one or more geometric constructs to
facilitate determining occurrence of engagement gestures
from information about one or more control objects. Virtual
control constructs in an embodiment can include virtual
surface constructs, virtual linear or curvilinear constructs,
virtual point constructs, virtual solid constructs, and com-
plex virtual constructs comprising combinations thereof.
Virtual surface constructs can comprise one or more sur-
faces, e.g., a plane, curved open surface, closed surface,
bounded open surface, or generally any multi-dimensional
virtual surface definable in two or three dimensions. Virtual
linear or curvilinear constructs can comprise any one-di-
mensional virtual line, curve, line segment or curve segment
definable in one, two, or three dimensions. Virtual point
constructs can comprise any zero-dimensional virtual point
definable in one, two, or three dimensions. Virtual solids can
comprise one or more solids, e.g., spheres, cylinders, cubes,
or generally any three-dimensional virtual solid definable in
three dimensions.

In an embodiment, an engagement target can be defined
using one or more virtual construct(s) coupled with a virtual
control (e.g., slider, button, rotatable knob, or any graphical
user interface component) for presentation to user(s) by a
presentation system (e.g., displays, 3D projections, holo-
graphic presentation devices, non-visual presentation sys-
tems such as haptics, audio, and the like, any other devices
for presenting information to users, or combinations
thereof). Coupling a virtual control with a virtual construct
enables the control object to “aim” for, or move relative to,
the virtual control—and therefore the virtual control con-
struct. Engagement targets in an embodiment can include
engagement volumes, engagement surfaces, engagement
lines, engagement points, or the like, as well as complex
engagement targets comprising combinations thereof. An
engagement target can be associated with an application or
non-application (e.g., OS, systems software, etc.) so that
virtual control managers (i.e., program routines, classes,
objects, etc. that manage the virtual control) can trigger
differences in interpretation of engagement gestures includ-
ing presence, position and/or shape of control objects,
control object motions, or combinations thereof to conduct
machine control.

Engagement targets can be used to determine engagement
gestures by providing the capability to discriminate between
engagement and non-engagement (e.g., virtual touches,
moves in relation to, and/or virtual pierces) of the engage-
ment target by the control object. Thus, the user can, for
example, operate a cursor in at least two modes: a disen-
gaged mode in which it merely indicates a position on the
screen, typically without otherwise affecting the screen
content; and one or more engaged modes, which allow the
user to manipulate the screen content. In the engaged mode,
the user may, for example, drag graphical user-interface
elements (such as icons representing files or applications,
controls such as scroll bars, or displayed objects) across the
screen, or draw or write on a virtual canvas. Further,
transient operation in the engaged mode may be interpreted
as a click event. Thus, operation in the engaged mode may
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correspond to, or emulate, touching a touch screen or touch
pad, or controlling a mouse with a mouse button held down.
Different or additional operational modes may also be
defined, and may go beyond the modes available with
traditional contact-based user input devices. The disengaged
mode may simulate contact with a virtual control, and/or a
hover in which the control is selected but not actuated).
Other modes useful in various embodiments include an
“idle,” in which no control is selected nor virtually touched,
and a “lock,” in which the last control to be engaged with
remains engaged until disengaged. Yet further, hybrid modes
can be created from the definitions of the foregoing modes
in embodiments.

The term “cursor,” as used in this discussion, refers
generally to the cursor functionality rather than the visual
element; in other words, the cursor is a control element
operable to select a screen position—whether or not the
control element is actually displayed—and manipulate
screen content via movement across the screen, i.e., changes
in the selected position. The cursor need not always be
visible in the engaged mode. In some instances, a cursor
symbol still appears, e.g., overlaid onto another graphical
element that is moved across the screen, whereas in other
instances, cursor motion is implicit in the motion of other
screen elements or in newly created screen content (such as
a line that appears on the screen as the control object moves),
obviating the need for a special symbol. In the disengaged
mode, a cursor symbol is typically used to visualize the
current cursor location. Alternatively or additionally, a
screen element or portion presently co-located with the
cursor (and thus the selected screen location) may change
brightness, color, or some other property to indicate that it
is being pointed at. However, in certain embodiments, the
symbol or other visual indication of the cursor location may
be omitted so that the user has to rely on his own observation
of the control object relative to the screen to estimate the
screen location pointed at. (For example, in a shooter game,
the player may have the option to shoot with or without a
“virtual sight” indicating a pointed-to screen location.)

In various embodiments, to trigger an engaged mode—
corresponding to, e.g., touching an object or a virtual object
displayed on a screen—the control object’s motion toward
an engagement target such as a virtual surface construct (i.e.,
a plane, plane portion, or other (non-planar or curved)
surface computationally or programmatically defined in
space, but not necessarily corresponding to any physical
surface) may be tracked; the motion may be, e.g., a forward
motion starting from a disengaged mode, or a backward
retreating motion. When the control object reaches a spatial
location corresponding to this virtual surface construct—i.e.,
when the control object intersects “touches” or “pierces” the
virtual surface construct—the user interface (or a component
thereof, such as a cursor, user-interface control, or user-
interface environment) is operated in the engaged mode; as
the control object retracts from the virtual surface construct,
user-interface operation switches back to the disengaged
mode.

In embodiments, the virtual surface construct may be
fixed in space, e.g., relative to the screen; for example, it
may be defined as a plane (or portion of a plane) parallel to
and located several inches in front of the screen in one
application, or as a curved surface defined in free space
convenient to one or more users and optionally proximately
to display(s) associated with one or more machines under
control. The user can engage this plane while remaining at
a comfortable distance from the screen (e.g., without need-
ing to lean forward to reach the screen). The position of the
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plane may be adjusted by the user from time to time. In
embodiments, however, the user is relieved of the need to
explicitly change the plane’s position; instead, the plane (or
other virtual surface construct) automatically moves along
with, as if tethered to, the user’s control object. For example,
a virtual plane may be computationally defined as perpen-
dicular to the orientation of the control object and located a
certain distance, e.g., 3-4 millimeters, in front of its tip when
the control object is at rest or moving with constant velocity.
As the control object moves, the plane follows it, but with
a certain time lag (e.g., 0.2 second). As a result, as the
control object accelerates, the distance between its tip and
the virtual touch plane changes, allowing the control object,
when moving towards the plane, to eventually “catch” the
plane—that is, the tip of the control object to touch or pierce
the plane. Alternatively, instead of being based on a fixed
time lag, updates to the position of the virtual plane may be
computed based on a virtual energy potential defined to
accelerate the plane towards (or away from) the control
object tip depending on the plane-to-tip distance, likewise
allowing the control object to touch or pierce the plane.
Either way, such virtual touching or piercing can be inter-
preted as engagement events. Further, in some embodi-
ments, the degree of piercing (i.e., the distance beyond the
plane that the control object reaches) is interpreted as an
intensity level. To guide the user as she engages with or
disengages from the virtual plane (or other virtual surface
construct), the cursor symbol may encode the distance from
the virtual surface visually, e.g., by changing in size with
varying distance.

In an embodiment, once engaged, further movements of
the control object may serve to move graphical components
across the screen (e.g., drag an icon, shift a scroll bar, etc.),
change perceived “depth” of the object to the viewer (e.g.,
resize and/or change shape of objects displayed on the
screen in connection, alone, or coupled with other visual
effects) to create perception of “pulling” objects into the
foreground of the display or “pushing” objects into the
background of the display, create new screen content (e.g.,
draw a line), or otherwise manipulate screen content until
the control object disengages (e.g., by pulling away from the
virtual surface, indicating disengagement with some other
gesture of the control object (e.g., curling the forefinger
backward); and/or with some other movement of a second
control object (e.g., waving the other hand, etc.)). Advan-
tageously, tying the virtual surface construct to the control
object (e.g., the user’s finger), rather than fixing it relative to
the screen or other stationary objects, allows the user to
consistently use the same motions and gestures to engage
and manipulate screen content regardless of his precise
location relative to the screen. To eliminate the inevitable
jitter typically accompanying the control object’s move-
ments and which might otherwise result in switching back
and forth between the modes unintentionally, the control
object’s movements may be filtered and the cursor position
thereby stabilized. Since faster movements will generally
result in more jitter, the strength of the filter may depend on
the speed of motion.

In an embodiment and by way of example, as illustrated
in FIGS. 5A and 5B, a virtual control construct implemented
by a virtual plane 500 may be defined in front of and
substantially parallel to the screen 502 of a machine under
control. When the control object 504 (e.g., as shown, the
user’s index finger) “touches” or “pierces” the virtual plane
(i.e., when its spatial location coincides with, intersects, or
moves beyond the virtual plane’s computationally defined
spatial location), the cursor 506 and/or machine interface
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operates in the engaged mode (FIG. 5B); otherwise, the
cursor and/or machine interface operates in the disengaged
mode (FIG. 5A). To implement two or more distinct engaged
modes, multiple virtual planes may be defined. For instance,
a drawing application may define two substantially parallel
virtual planes at different distances from the screen. When
the user, moving his finger towards the screen, pierces the
first virtual plane, the user may be able to operate menus and
controls within the application; when his finger pierces the
second virtual plane, the finger’s further (e.g., lateral)
motions may be converted to line drawings on the screen.
Two parallel virtual planes may also be used to, effectively,
define a virtual control construct with a certain associated
thickness (i.e., a “virtual slab”). Control object movements
within that virtual slab may operate the cursor in the engaged
mode, while movements on either side of the virtual slab
correspond to the disengaged mode. A planar virtual control
construct with a non-zero thickness may serve to avoid
unintended engagement and disengagement resulting from
inevitable small motions in and out of the virtual plane (e.g.,
due to the inherent instability of the user’s hand and/or the
user’s perception of depth). The thickness may vary depend-
ing on one or more sensed parameters (e.g., the overall speed
of the control object’s motion; the faster the movements, the
thicker the slice may be chosen to be).

Transitions between the different operational modes may,
but need not, be visually indicated by a change in the shape,
color (as in FIGS. 5A and 5B), or other visual property of the
cursor or other displayable object and/or audio feedback. In
some embodiments, the cursor symbol indicates not only the
operational mode, but also the control object’s distance from
the virtual control construct. For instance, the cursor symbol
may take the form of a circle, centered at the cursor location,
whose radius is proportional to (or otherwise monotonically
increasing with) the distance between control object and
virtual control construct, and which, optionally, changes
color when switching from the disengaged mode into the
engaged mode.

Of course, the system under control need not be a desktop
computer. FIG. 5C-1 illustrates an embodiment in which
free-space gestures are used to operate a handheld tablet
510. The tablet 510 may be connected, e.g., via a USB cable
512 (or any other wired or wireless connection), to a
motion-capture device 114 (such as for example, a dual-
camera motion controller as provided by Leap Motion, Inc.,
San Francisco, Calif. or other interfacing mechanisms and/or
combinations thereof) that is positioned and oriented so as to
monitor a region where hand motions normally take place.
For example, the motion-capture device 514 may be placed
onto a desk or other working surface, and the tablet 510 may
be held at an angle to that working surface to facilitate easy
viewing of the displayed content. The tablet 510 may be
propped up on a tablet stand or against a wall or other
suitable vertical surface to free up the second hand, facili-
tating two-hand gestures. FIG. 5C-2 illustrates a modified
tablet embodiment, in which the motion-capture device 514
is integrated into the frame of the tablet 510.

The virtual surface construct need not be planar, but may
be curved in space, e.g., to conform to the user’s range of
movements. FIG. 5D illustrates, for example, a cylindrical
virtual surface construct 520 in front of an arrangement of
three monitors 522, 524, 526, which may all be connected to
the same computer. The user’s finger motions may control
screen content on any one of the screens, depending on the
direction in which the finger 528 points and/or the portion of
the virtual surface construct 520 that it pierces. Of course,
other types of curved virtual surfaces constructs of regular
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(e.g., spherical) or irregular shape, or virtual surface con-
structs composed of multiple (planar or curved) segments,
may also be used in combination with one or more screens.
Further, in some embodiments, the virtual control construct
is a virtual solid construct or a virtual closed surface (such
as, e.g., a sphere, box, oriented ellipsoid, etc.) or portion
thereof, having an interior (or, alternatively, exterior) that
defines a three-dimensional engagement target. For instance,
in an application that allows the user to manipulate a globe
depicted on the screen, the virtual control construct may be
a virtual sphere located at some distance in front of the
screen. The user may be able to rotate the on-screen globe
by moving his fingertips while they are touching or piercing
the spherical virtual surface construct (from outside). To
allow the user to manipulate the globe from inside, the
spherical virtual surface construct may be defined as sur-
rounding the user (or at least his hand), with its exterior
serving as the engagement target. Engagement and disen-
gagement of the control object need not necessarily be
defined relative to a two-dimensional surface. Rather, in
some embodiments, the virtual control construct may be a
virtual point construct along a virtual line (or line segment)
extending from the control object, or a line within a plane
extending from the control object.

The location and/or orientation of the virtual surface
construct (or other virtual control construct) may be defined
relative to the room and/or stationary objects (e.g., a screen)
therein, relative to the user, relative to the device 514 or
relative to some combination. For example, a planar virtual
surface construct may be oriented parallel to the screen,
perpendicular to the direction of the control object, or at
some angle in between. The location of the virtual surface
construct can, in some embodiments, be set by the user, e.g.,
by means of a particular gesture recognized by the motion-
capture system. To give just one example, the user may, with
her index finger stretched out, have her thumb and middle
finger touch so as to pin the virtual surface construct at a
certain location relative to the current position of the index-
finger-tip. Once set in this manner, the virtual surface
construct may be stationary until reset by the user via
performance of the same gesture in a different location.

In some embodiments, the virtual surface construct is tied
to and moves along with the control object, i.e., the position
and/or orientation of the virtual surface construct are
updated based on the tracked control object motion. This
affords the user maximum freedom of motion by allowing
the user to control the user interface from anywhere (or
almost anywhere) within the space monitored by the motion-
capture system. To enable the relative motion between the
control object and virtual surface construct that is necessary
for piercing the surface, the virtual surface construct follows
the control object’s movements with some delay. Thus,
starting from a steady-state distance between the virtual
surface construct and the control object tip in the disengaged
mode, the distance generally decreases as the control object
accelerates towards the virtual surface construct, and
increases as the control object accelerates away from the
virtual surface construct. If the control object’s forward
acceleration (i.e., towards the virtual surface construct) is
sufficiently fast and/or prolonged, the control object even-
tually pierces the virtual surface construct. Once pierced, the
virtual surface construct again follows the control object’s
movements. However, whereas, in the disengaged mode, the
virtual surface construct is “pushed” ahead of the control
object (i.e., is located in front of the control object tip), it is
“pulled” behind the control object in the engaged mode (i.e.,
is located behind the control object tip). To disengage, the
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control object generally needs to be pulled back through the
virtual surface construct with sufficient acceleration to
exceed the surface’s responsive movement.

In an embodiment, an engagement target can be defined as
merely the point where the user touches or pierces a virtual
control construct. For example, a virtual point construct may
be defined along a line extending from or through the control
object tip, or any other point or points on the control object,
located a certain distance from the control object tip in the
steady state, and moving along the line to follow the control
object. The line may, e.g., be oriented in the direction of the
control object’s motion, perpendicularly project the control
object tip onto the screen, extend in the direction of the
control object’s axis, or connect the control object tip to a
fixed location, e.g., a point on the display screen. Irrespec-
tive of how the line and virtual point construct are defined,
the control object can, when moving sufficiently fast and in
a certain manner, “catch” the virtual point construct. Simi-
larly, a virtual line construct (straight or curved) may be
defined as a line within a surface intersecting the control
object at its tip, e.g., as a line lying in the same plane as the
control object and oriented perpendicular (or at some other
non-zero angle) to the control object. Defining the virtual
line construct within a surface tied to and intersecting the
control object tip ensures that the control object can even-
tually intersect the virtual line construct.

In an embodiment, engagement targets defined by one or
more virtual point constructs or virtual line (i.e., linear or
curvilinear) constructs can be mapped onto engagement
targets defined as virtual surface constructs, in the sense that
the different mathematical descriptions are functionally
equivalent. For example, a virtual point construct may
correspond to the point of a virtual surface construct that is
pierced by the control object (and a virtual line construct
may correspond to a line in the virtual surface construct
going through the virtual point construct). If the virtual point
construct is defined on a line projecting the control object tip
onto the screen, control object motions perpendicular to that
line move the virtual point construct in a plane parallel to the
screen, and if the virtual point construct is defined along a
line extending in the direction of the control object’s axis,
control object motions perpendicular to that line move the
virtual point construct in a plane perpendicular to that axis;
in either case, control object motions along the line move the
control object tip towards or away from the virtual point
construct and, thus, the respective plane. Thus, the user’s
experience interacting with a virtual point construct may be
little (or no) different from interacting with a virtual surface
construct. Hereinafter, the description will, for ease of
illustration, focus on virtual surface constructs. A person of
skill in the art will appreciate, however, that the approaches,
methods, and systems described can be straightforwardly
modified and applied to other virtual control constructs (e.g.,
virtual point constructs or virtual linear/curvilinear con-
structs).

The position and/or orientation of the virtual surface
construct (or other virtual control construct) are typically
updated continuously or quasi-continuously, i.e., as often as
the motion-capture system determines the control object
location and/or direction (which, in visual systems, corre-
sponds to the frame rate of image acquisition and/or image
processing). However, embodiments in which the virtual
surface construct is updated less frequently (e.g., only every
other frame, to save computational resources) or more
frequently (e.g., based on interpolations between the mea-
sured control object positions) can be provided for in
embodiments.
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In some embodiments, the virtual surface construct fol-
lows the control object with a fixed time lag, e.g., between
0.1 and 1.0 second. In other words, the location of the virtual
surface construct is updated, for each frame, based on where
the control object tip was a certain amount of time (e.g., 0.2
second) in the past. This is illustrated in FIG. 6, which shows
the control object and the virtual surface construct (repre-
sented as a plane) at locations within a consistent coordinate
system across the subfigures for various points in time
according to various embodiments. As depicted, the plane
may be computationally defined as substantially perpendicu-
lar to the orientation of the control object (meaning that its
normal is angled relative to the control object orientation by
less than a certain small amount, e.g., less than 5°, and
preferably smaller than 1°). Of course, the virtual plane need
not necessarily be perpendicular to the orientation of the
control object. In some embodiments, it is, instead, substan-
tially parallel to the screen, but still dynamically positioned
relative to the control object (e.g., so as to remain at a certain
distance from the control object tip, where distance may be
measured, e.g., in a direction perpendicular to the screen or,
alternatively, in the direction of the control object).

At a first point t=t, in time, when the control object is at
rest, the virtual plane is located at its steady-state distance d
in front of the control object tip; this distance may be, e.g.,
a few millimeters. At a second point t=t, in time—after the
control object has started moving towards the virtual plane,
but before the lag period has passed—the virtual plane is still
in the same location, but its distance from the control object
tip has decreased due to the control object’s movement. One
lag period later, at t=t, +At,,,, the virtual plane is positioned
the steady-state distance away from the location of the
control object tip at the second point in time, but due to the
control object’s continued forward motion, the distance
between the control object tip and the virtual plane has
further decreased. Finally, at a fourth point in time t=t,, the
control object has pierced the virtual plane. One lag time
after the control object has come to a halt, at t=t,+At,,, the
virtual plane is again a steady-state distance away from the
control object tip but now on the other side. When the
control object is subsequently pulled backwards, the dis-
tance between its tip and the virtual plane decreases again
(t=t; and t=t,,), until the control object tip emerges at the first
side of the virtual plane (t=t;). The control object may stop
at a different position than where it started, and the virtual
plane will eventually follow it and be, once more, a steady-
state distance away from the control object tip (t=t;). Even
if the control object continues moving, if it does so at a
constant speed, the virtual plane will, after an initial lag
period to “catch up,” follow the control object at a constant
distance.

The steady-state distances in the disengaged mode and the
engaged mode may, but need not be the same. In some
embodiments, for instance, the steady-state distance in the
engaged mode is larger, such that disengaging from the
virtual plane (i.e., “unclicking”) appears harder to the user
than engaging (i.e., “clicking”) because it requires a larger
motion. Alternatively or additionally, to achieve a similar
result, the lag times may differ between the engaged and
disengaged modes. Further, in some embodiments, the
steady-state distance is not fixed, but adjustable based on the
control object’s speed of motion, generally being greater for
higher control object speeds. As a result, when the control
object moves very fast, motions toward the plane are “buft-
ered” by the rather long distance that the control object has
to traverse relative to the virtual plane before an engagement
event is recognized (and, similarly, backwards motions for
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disengagement are buffered by a long disengagement
steady-state distance). A similar effect can also be achieved
by decreasing the lag time, i.e., increasing the responsive-
ness of touch-surface position updates, as the control object
speed increases. Such speed-based adjustments may serve to
avoid undesired switching between the modes that may
otherwise be incidental to fast control object movements.

In various embodiments, the position of the virtual plane
(or other virtual surface construct) is updated not based on
a time lag, but based on its current distance from the control
object tip. That is, for any image frame, the distance between
the current control object tip position and the virtual plane
is computed (e.g., with the virtual-plane position being taken
from the previous frame), and, based thereon, a displace-
ment or shift to be applied to the virtual plane is determined.
In some embodiments, the update rate as a function of
distance may be defined in terms of a virtual “potential-
energy surface” or “potential-energy curve.” In FIG. 7A, an
exemplary such potential-energy curve 700 is plotted as a
function of the distance of the virtual plane from the control
object tip according to various embodiments. The negative
derivative 702 (or slope) of this curve, which specifies the
update rate, i.c., the shift in the virtual plane’s position per
frame (in arbitrary units), is shown in FIG. 7B. The minima
of the potential-energy curve 700 determine the steady-state
distances 704, 706 to both sides of the control object; at
these distances, the virtual plane is not updated at all. At
larger distances, the virtual plane is attracted towards the
control object tip, at a rate that generally increases with
distance. For example, at point 708, where the virtual plane
is a positive distance d, away from the control object, a
negative displacement or shift Ds; is applied to bring the
virtual plane closer. Conversely, at point 710, where the
virtual plane has a negative distance d, from the control
object tip (corresponding to piercing of the virtual plane, i.e.,
the engaged mode), a positive shift Ds, is applied to move
the virtual plane closer to the control object. At distances
below the steady-state distance (e.g., at point 712), the
virtual plane is repelled by the control object and driven
back towards the steady state. The magnitude of the local
maximum 714 between the two steady states determines the
level of force or acceleration needed to cross from the
disengaged to the engaged mode or back. In certain embodi-
ments, the potential-energy curve 700 is given an even more
physical interpretation, and its negative slope is associated
with an acceleration, i.e., a change in the velocity of the
virtual plane, rather than a change in its position. In this case,
the virtual plane does not immediately stop as it reaches a
steady state, but oscillates around the steady state. To slow
down the virtual plane’s motion and thereby stabilize its
position, a friction term may be introduced into the physical
model.

The potential-energy curve need not be symmetric, or
course. FI1G. 7C, for example, shows an asymmetric curve in
which the steady-state distance in the engaged mode is larger
than that in the disengaged mode, rendering disengagement
harder. Further, as illustrated in FIG. 7D, the curve may have
more than two (e.g., four) steady states 720, which may
correspond to one disengaged and three engaged modes. The
requisite force to transition between modes depends, again,
on the heights of the local maxima 722 between the steady
states. In some embodiments, the curve abruptly jumps at
the steady-state points and assumes a constant, higher value
therebetween. In this case, which is illustrated in FIG. 7E,
the position of the virtual plane is not updated whenever the
control object tip is within the steady-state distance from the
virtual plane on either side, allowing fast transitions between
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the modes. Accordingly, the potential-energy curve may take
many other forms, which may be tailored to a desired
engagement-disengagement force profile experienced by the
user. Moreover, the virtual plane may be updated in accor-
dance with a two-dimensional potential-energy surface that
defines the update rate depending on, e.g., the distances
between the virtual plane and control object tip along
various directions (as opposed to only one, e.g., the perpen-
dicular and shortest, distance of the control object tip from
the virtual plane). For example, the virtual plane may follow
the control object differently for different relative orienta-
tions between the control object and the virtual plane, and
each such relative orientation may correspond to a cross-
section through the potential-energy surface. Two-dimen-
sional potential-energy surfaces may also be useful to con-
trol position updates applied to a curved virtual surface
construct.

Furthermore, the potential piercing energy need not, or
not only, be a function of the distance from the control object
tip to the virtual surface construct, but may depend on other
factors. For example, in some embodiments, a stylus with a
pressure-sensitive grip is used as the control object. In this
case, the pressure with which the user squeezes the stylus
may be mapped to the piercing energy.

Whichever way the virtual surface construct is updated,
jitter in the control object’s motions may result in uninten-
tional transitions between the engaged and disengaged
modes. While such modal instability may be combatted by
increasing the steady-state distance (i.e., the “buffer zone”
between control object and virtual surface construct), this
comes at the cost of requiring the user, when she intends to
switch modes, to perform larger movements that may feel
unnatural. The trade-off between modal stability and user
convenience may be improved by filtering the tracked
control object movements. Specifically, jitter may be filtered
out, based on the generally more frequent changes in direc-
tion associated with it, with some form of time averaging.
Accordingly, in one embodiment, a moving-average filter
spanning, e.g., a few frames, is applied to the tracked
movements, such that only a net movement within each time
window is used as input for cursor control. Since jitter
generally increases with faster movements, the time-aver-
aging window may be chosen to likewise increase as a
function of control object velocity (such as a function of
overall control object speed or of a velocity component, e.g.,
perpendicular to the virtual plane). In another embodiment,
the control object’s previous and newly measured position
are averaged with weighting factors that depend, e.g., on
velocity, frame rate, and/or other factors. For example, the
old and new positions may be weighted with multipliers of
x and (1-x), respectively, where x varies between 0 and 1
and increases with velocity. In one extreme, for x=1, the
cursor remains completely still, whereas for the other
extreme, x=0, no filtering is performed at all.

FIG. 8A summarizes representative methods for control-
object-controlled cursor operation that utilize a virtual sur-
face construct moving with the control object in accordance
with various embodiments. In the method embodiment
illustrated by FIG. 8A, a control object is tracked (800),
based on computer vision or otherwise, to determine its
position and/or orientation in space (typically within a
detection zone proximate to the computer screen). Option-
ally, the tracked control object motion is computationally
filtered to reduce jitter (802). Based on the tracked control
object in conjunction with a definition of the virtual surface
construct relative thereto, the position and/or orientation of
the virtual surface construct are then computed (804). In
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embodiments where the virtual surface construct is updated
based on a control object position in the past, it may initially
take a few control object tracking cycles (e.g., frames in
image-based tracking) before the first position of the virtual
surface construct is established; thereafter, the virtual sur-
face construct can be updated every cycle. In embodiments
where the virtual surface construct is shifted from cycle to
cycle based on its instantaneous distance from the control
object tip, the position of the virtual surface construct may
be initiated arbitrarily, e.g., such that the virtual surface
construct starts a steady-state distance away from the control
object. Following computation of the virtual surface con-
struct, the current operational mode (engaged or disengaged)
is identified based on a determination whether the control
object touches or pierces the virtual surface construct or not
(806). Further, the current cursor position is calculated,
typically from the control object’s position and orientation
relative to the screen (808). (This step may be performed
prior to, or in parallel with, the computations of the virtual
surface construct.) Based on the operational mode and
cursor position, the screen content is then updated (810),
e.g., to move the cursor symbol or re-arrange other screen
content. Steps 800-810 are executed in a loop as long as the
user interacts with the system via free-space control object
motions.

In some embodiments, temporary piercing of the virtual
surface construct—i.e., a clicking motion including penetra-
tion of the virtual surface construct immediately followed by
withdrawal from the virtual surface construct—switches
between modes and locks in the new mode. For example,
starting in the disengaged mode, a first click event may
switch the control object into the engaged mode, where it
may then remain until the virtual surface construct is clicked
at again.

Further, in some embodiments, the degree of piercing
(i.e., the distance beyond the virtual surface construct that
the control object initially reaches, before the virtual surface
construct catches up) is interpreted as an intensity level that
can be used to refine the control input. For example, the
intensity (of engagement) in a swiping gesture for scrolling
through screen content may determine the speed of scroll-
ing. Further, in a gaming environment or other virtual world,
different intensity levels when touching a virtual object (by
penetrating the virtual surface construct while the cursor is
positioned on the object as displayed on the screen) may
correspond to merely touching the object versus pushing the
object over. As another example, when hitting the keys of a
virtual piano displayed on the screen, the intensity level may
translate into the volume of the sound created. Thus, touch-
ing or engagement of a virtual surface construct (or other
virtual control construct) may provide user input beyond the
binary discrimination between engaged and disengaged
modes.

FIGS. 8B and 8B-1 illustrate at a higher conceptual level
various methods for controlling a machine-user interface
using free-space gestures or motions performed by a control
object. The method involves receiving information includ-
ing motion information for a control object (820). Further, it
includes determining from the motion information whether
the motion corresponds to an engagement gesture (822).
This determination may be made by determining whether an
intersection occurred between the control object and a
virtual control construct (824); whether a dis-intersection of
the control object from the at least one virtual control
construct occurred (826); and/or whether motion of the
control object occurred relative to at least one virtual control
construct (828). Further, the determination may involve



US 9,459,697 B2

35

determining, from the motion information, one or more
engagement attributes (e.g., a potential energy) defining an
engagement gesture (830), and/or identifying an engage-
ment gesture by correlating the motion information to one of
a plurality of engagement gestures based in part upon one or
more of motion of the control object, occurrence of any of
an intersection, a dis-intersection or a non-intersection of the
control object with the virtual control construct, and the set
of'engagement attributes (832). Once an engagement gesture
has been recognized, the user-interface control to which the
gesture applies (e.g., a control associated with an application
or an operating environment, or a special control) is selected
or otherwise determined (834). The control may then be
manipulated according to the gesture (836).

As will be readily apparent to those of skill in the art, the
methods described above can be readily extended to the
control of a user interface with multiple simultaneously
tracked control objects. For instance, both left and right
index fingers of a user may be tracked, each relative to its
own associated virtual touch surface, to operate to cursors
simultaneously and independently. As another example, the
user’s hand may be tracked to determine the positions and
orientations of all fingers; each finger may have its own
associated virtual surface construct (or other virtual control
construct) or, alternatively, all fingers may share the same
virtual surface construct, which may follow the overall hand
motions. A joint virtual plane may serve, e.g., as a virtual
drawing canvas on which multiple lines can be drawn by the
fingers at once.

In an embodiment and by way of example, one or more
control parameter(s) and the control object are applied to
some control mechanism to determine the distance of the
virtual control construct to a portion of the control object
(e.g., tool tip(s), point(s) of interest on a user’s hand or other
points of interest). In some embodiments, a lag (e.g., filter or
filtering function) is introduced to delay, or modify, appli-
cation of the control mechanism according to a variable or
a fixed increment of time, for example. Accordingly,
embodiments can provide enhanced verisimilitude to the
human-machine interaction, and/or increased fidelity of
tracking control object(s) and/or control object portion(s).

In one example, the control object portion is a user’s
finger-tip. A control parameter is also the user’s finger-tip. A
control mechanism includes equating a plane-distance
between virtual control construct and finger-tip to a distance
between finger-tip and an arbitrary coordinate (e.g., center
(or origin) of an interaction zone of the controller). Accord-
ingly, the closer the finger-tip approaches to the arbitrary
coordinate, the closer the wvirtual control construct
approaches the finger-tip.

In another example, the control object is a hand, which
includes a control object portion, e.g., a palm, determined by
a “palm-point” or center of mass of the entire hand. A control
parameter includes a velocity of the hand, as measured at the
control object portion, i.e., the center of mass of the hand. A
control mechanism includes filtering forward velocity over
the last one (1) second. Accordingly, the faster the palm has
recently been travelling forward, the closer the virtual con-
trol construct approaches to the control object (i.e., the
hand).

In a further example, a control object includes a control
object portion (e.g., a finger-tip). A control mechanism
includes determining a distance between a thumb-tip (e.g., a
first control object portion) and an index finger (e.g., a
second control object portion). This distance can be used as
a control parameter. Accordingly, the closer the thumb-tip
and index-finger, the closer the virtual control construct is
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determined to be to the index finger. When the thumb-tip and
index finger touch one another, the virtual control construct
is determined to be partially pierced by the index finger. A
lag (e.g., filter or filtering function) can introduce a delay in
the application of the control mechanism by some time-
increment proportional to any quantity of interest, for
example horizontal jitter (i.e., the random motion of the
control object in a substantially horizontal dimension).
Accordingly, the greater the shake in a user’s hand, the more
lag will be introduced into the control mechanism.

Machine and user-interface control via free-space motions
relies generally on a suitable motion-capture device or
system for tracking the positions, orientations, and motions
of one or more control objects. For a description of tracking
positions, orientations, and motions of control objects, ref-
erence may be had to U.S. patent application Ser. No.
13/414,485, filed on Mar. 7, 2012, the entire enclosure of
which is incorporated herein by reference. In various
embodiments, motion capture can be accomplished visually,
based on a temporal sequence of images of the control object
(or a larger object of interest including the control object,
such as the user’s hand) captured by one or more cameras.
In one embodiment, images acquired from two (or more)
vantage points are used to define tangent lines to the surface
of the object and approximate the location and shape of the
object based thereon, as explained in more detail below.
Other vision-based approaches that can be used in embodi-
ments include, without limitation, stereo imaging, detection
of patterned light projected onto the object, or the use of
sensors and markers attached to or worn by the object (such
as, e.g., markers integrated into a glove) and/or combina-
tions thereof. Alternatively or additionally, the control object
may be tracked acoustically or ultrasonically, or using
inertial sensors such as accelerometers, gyroscopes, and/or
magnetometers (e.g., MEMS sensors) attached to or embed-
ded within the control object. Embodiments can be built
employing one or more of particular motion-tracking
approaches that provide control object position and/or ori-
entation (and/or derivatives thereof) tracking with sufficient
accuracy, precision, and responsiveness for the particular
application.

FIGS. 9A and 9B illustrate an exemplary system for
capturing images and controlling a machine based on
motions of a control object according to various embodi-
ments. As shown in FIG. 9A, the system includes motion-
capture hardware including two video cameras 900, 902 that
acquire a stream of images of a region of interest 904 from
two different vantage points. The cameras 900, 902 are
connected to a computer 906 that processes these images to
infer three-dimensional information about the position and
orientation of a control object 908, or a larger object of
interest including the control object (e.g., a user’s hand), in
the region of interest 904, and computes suitable control
signals to the user interface based thereon. The cameras may
be, e.g., CCD or CMOS cameras, and may operate, e.g., in
the visible, infrared (IR), or ultraviolet wavelength regime,
either by virtue of the intrinsic sensitivity of their sensors
primarily to these wavelengths, or due to appropriate filters
910 placed in front of the cameras. In some embodiments,
the motion-capture hardware includes, co-located with the
cameras 900, 902, one or more light sources 912 that
illuminate the region of interest 904 at wavelengths match-
ing the wavelength regime of the cameras 900, 902. For
example, the light sources 912 may be LEDs that emit IR
light, and the cameras 900, 902 may capture IR light that is
reflected off the control object and/or objects in the back-
ground. Due to the inverse-square dependence of the illu-
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mination intensity on the distance between the light sources
912 and the illuminated object, foreground objects such as
the control object generally appear significantly brighter in
the images than background objects, aiding in intensity-
based foreground/background discrimination. In some
embodiments, the cameras 900, 902 and light sources 912
are disposed below the control object to be tracked and point
upward. For example, they may be placed on a desk to
capture hand motions taking place in a spatial region above
the desk, e.g., in front of the screen. This location may be
optimal both for foreground/background discrimination (be-
cause the background is in this case typically the ceiling and,
thus, far away) and for discerning the control object’s
direction and tip position (because the usual pointing direc-
tion will lie, more or less, in the image plane).

As mentioned above, the control object may, alternatively,
be tracked acoustically. In this case, the light sources 900,
902 are replaced by sonic sources. The sonic sources trans-
mit sound waves (e.g., ultrasound that is not audible by the
user) to the user; the user either blocks or alters the sound
waves that impinge upon her, i.e., causes “sonic shadowing”
or “sonic deflection.” Such sonic shadows and/or deflections
can also be sensed and analyzed to reconstruct the shape,
configuration, position, and orientation of the control object,
and, based thereon, detect the user’s gestures.

The computer 906 processing the images acquired by the
cameras 900, 902 may be a suitably programmed general-
purpose computer. As shown in FIG. 9B, it may include a
processor (or CPU) 920, associated system memory 922
(typically volatile memory, e.g., RAM), one or more per-
manent storage devices 924 (such as hard disks, CDs,
DVDs, memory keys, etc.), a display screen 926 (e.g., an
LCD screen or CRT monitor), input devices (such as a
keyboard and, optionally, a mouse) 928, and a system bus
930 that facilitates communication between these compo-
nents and, optionally via a dedicated interface, with the
cameras 900, 902 and/or other motion-capture hardware.
The memory 922 may store computer-executable instruc-
tions, conceptually illustrated as a group of modules and
programmed in any of various suitable programming lan-
guages (such as, e.g., C, C++, Java, Basic, Python, Pascal,
Fortran, assembler languages, etc.), that control the opera-
tion of the CPU and provide the requisite computational
functionality for implementing methods in accordance here-
with. One of these modules is typically an operating system
932, such as Microsoft WINDOWS operating system, the
Unix operating system, the Linux operating system, the
Xenix operating system, the IBM AIX operating system, the
Hewlett Packard UX operating system, the Novell NET-
WARE operating system, the Sun Microsystems SOLARIS
operating system, the OS/2 operating system, the BeOS
operating system, the MACINTOSH operating system, the
APACHE operating system, an OPENSTEP operating sys-
tem, i0S and Android mobile operating systems, or another
operating system of platform. In addition to the operating
system 932, which stores low-level system functions (such
as memory allocation and file management), the modules
may include one or more end-user applications 934 (such as,
e.g., web browsers, office applications, or video games), and
modules for image processing/analysis and control-object
tracking, gesture recognition, computation of the virtual
control construct and determination of the operational mode,
and cursor operation and user-interface control.

In one embodiment, an image analysis module 936 may
analyze pairs of image frames acquired by the two cameras
900, 902 (and stored, e.g., in image buffers in memory 922)
to identify the control object (or an object including the
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control object or multiple control objects, such as a user’s
hand) therein (e.g., as a non-stationary foreground object)
and detect its edges. Next, the module 936 may, for each pair
of corresponding rows in the two images, find an approxi-
mate cross-section of the control object by defining tangent
lines on the control object that extend from the vantage
points (i.e., the cameras) to the respective edge points of the
control object, and inscribe an ellipse (or other geometric
shape defined by only a few parameters) therein. The
cross-sections may then be computationally connected in a
manner that is consistent with certain heuristics and known
properties of the control object (e.g., the requirement of a
smooth surface) and resolves any ambiguities in the fitted
ellipse parameters. As a result, the control object is recon-
structed or modeled in three dimensions. This method, and
systems for its implementation, are described in more detail
in U.S. patent application Ser. No. 13/414,485, filed on Mar.
7, 2012, the entire enclosure of which is incorporated herein
by reference. A larger object including multiple control
objects can similarly be reconstructed with respective tan-
gent lines and fitted ellipses, typically exploiting informa-
tion of internal constraints of the object (such as a maximum
physical separation between the fingertips of one hand). The
image-analysis module 934 may, further, extract relevant
control object parameters, such as tip positions and orien-
tations as well as velocities, from the three-dimensional
model. In some embodiments, this information can be
inferred from the images at a lower level, prior to or without
the need for fully reconstructing the control object. These
operations are readily implemented by those skilled in the
art without undue experimentation. In some embodiments, a
filter module 938 receives input from the image-analysis
module 964, and smoothens or averages the tracked control
object motions; the degree of smoothing or averaging may
depend on a control object velocity as determined by the
image-analysis module 936.

A gesture-recognition module 940 may receive the track-
ing data about the control object from the image-analysis
module 936 (or, after filtering, from the filter module 938),
and use it to identify gestures, e.g., by comparison with
gesture records stored in a database 941 on the permanent
storage devices 924 and/or loaded into system memory 922.
The gesture-recognition module may also include, e.g., as
sub-modules, a gesture filter 942 that provides the function-
ality for ascertaining a dominant gesture among multiple
simultaneously detected gestures, and a completion tracker
943 that determines a degree of completion of the gesture as
the gesture is being performed.

An engagement-target module 944 may likewise receive
data about the control object’s location and/or orientation
from the image-analysis module 936 and/or the filter module
938, and use the data to compute a representation of the
virtual control construct, i.e., to define and/or update the
position and orientation of the virtual control construct
relative to the control object (and/or the screen); the repre-
sentation may be stored in memory in any suitable math-
ematical form. A touch-detection module 945 in communi-
cation with the engagement-target module 944 may
determine, for each frame, whether the control object
touches or pierces the virtual control construct.

A user-interface control module 946 may map detected
motions in the engaged mode into control input for the
applications 934 running on the computer 906. Collectively,
the end-user application 934 and the user-interface control
module 946 may compute the screen content, i.e., an image
for display on the screen 526, which may be stored in a
display buffer (e.g., in memory 922 or in the buffer of a GPU
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included in the system). In particular, the user-interface
control module 946 may include a cursor (sub)module 947
that determines a cursor location on the screen based on
tracking data from the image-analysis module 936 (e.g., by
computationally projecting the control object tip onto the
screen), and visualizes the cursor at the computed location,
optionally in a way that discriminates, based on output from
the touch-detection module 945, between the engaged and
disengaged mode (e.g., by using different colors). The cursor
module 947 may also modify the cursor appearance based
on the control object distance from the virtual control
construct; for instance, the cursor may take the form of a
circle having a radius proportional to the distance between
the control object tip and the virtual control construct.
Further, the user-interface control module 946 may include
completion-indicator (sub)module 948, which depicts the
degree of completion of a gesture, as determined by the
completion tracker 943, with a suitable indicator (e.g., a
partially filled circle). Additionally, the user-interface con-
trol module 946 may include a scaling (sub)module 949 that
determines the scaling ratio between actual control-object
movements and on-screen movements (e.g., based on direct
user input via a scale-control panel) and causes adjustments
to the displayed content based thereon.

The functionality of the different modules can, of course,
be grouped and organized in many different ways, as a
person of skill in the art would readily understand. Further,
it need not necessarily be implemented on a single computer,
but may be distributed between multiple computers. For
example, the image-analysis and gesture-recognition func-
tionality provided by modules 936, 938, 940, 944, 945, and
optionally also the user-interface control functionality of
module 946, may be implemented by a separate computer in
communication with the computer on which the end-user
applications 934 controlled via free-space control object
motions are executed, and/or integrated with the cameras
900, 902 and light sources 912 into a single motion-capture
device (which, typically, utilizes an application-specific
integrated circuit (ASIC) or other special-purpose computer
for image-processing). In another exemplary embodiment,
the camera images are sent from a client terminal over a
network to a remote server computer for processing, and the
tracked control object positions and orientations are sent
back to the client terminal as input into the user interface.
Embodiments can be realized using any number and
arrangement of computers (broadly understood to include
any kind of general-purpose or special-purpose processing
device, including, e.g., microcontrollers, ASICs, program-
mable gate arrays (PGAs), or digital signal processors
(DSPs) and associated peripherals) executing the methods
described herein, and any implementation of the various
functional modules in hardware, software, or a combination
thereof.

Computer programs incorporating various features or
functionality described herein may be encoded on various
computer readable storage media; suitable media include
magnetic disk or tape, optical storage media such as compact
disk (CD) or DVD (digital versatile disk), flash memory, and
any other non-transitory medium capable of holding data in
a computer-readable form. Computer-readable storage
media encoded with the program code may be packaged
with a compatible device or provided separately from other
devices. In addition, program code may be encoded and
transmitted via wired, optical, and/or wireless networks
conforming to a variety of protocols, including the Internet,
thereby allowing distribution, e.g., via Internet download
and/or provided on-demand as web-services.

20

25

40

45

55

40

The systems and methods described herein may find
application in a variety of computer-user-interface contexts,
and may replace mouse operation or other traditional means
of user input as well as provide new user-input modalities.
Free-space control object motions and virtual-touch recog-
nition may be used, for example, to provide input to com-
mercial and industrial legacy applications (such as, e.g.,
business applications, including Microsoft Outlook™; office
software, including Microsoft Office™, Windows™, Excel,
etc.; graphic design programs; including Microsoft Visio™
etc.), operating systems such as Microsoft Windows™; web
applications (e.g., browsers, such as Internet Explorer™);
other applications (such as e.g., audio, video, graphics
programs, etc.), to navigate virtual worlds (e.g., in video
games) or computer representations of the real world (e.g.,
Google Street View™), or to interact with three-dimensional
virtual objects (e.g., Google Earth™).

FIGS. 10A-13B illustrate various exemplary control
inputs achievable with free-space hand motions and gestures
when using systems and methods in accordance herewith.
An example of a compound gesture will be illustrated with
reference to an embodiment illustrated by FIGS. 10A-10D.
These diagrams are merely an example; one of ordinary skill
in the art would recognize many other variations, alterna-
tives, and modifications. FIG. 10A illustrates a system 500a
comprising wired and/or wirelessly communicatively
coupled components of a tower 1002qa, a display device
10044, a keyboard 10064 and optionally a tactile pointing
device (e.g., mouse, or track ball) 1008a. In some embodi-
ments, computing machinery of tower 1002a¢ can be inte-
grated into display device 1004¢ in an “all in one” configu-
ration. A position and motion sensing device (e.g., 1000a-1,
10004-2 and/or 1000a-3) comprises all or a portion of the
non-tactile interface system of FIG. 5A, that provides for
receiving non-tactile input based upon detected position(s),
shape(s) and/or motion(s) made by a hand 504 and/or any
other detectable object serving as a control object. The
position and motion sensing device can be embodied as a
stand-alone entity or integrated into another device, e.g., a
computer, workstation, laptop, notebook, smartphone, tab-
let, smart watch or other type of wearable intelligent
device(s) and/or combinations thereof. The position and
motion sensing device can be communicatively coupled
with, and/or integrated within, one or more of the other
elements of system 500a, and can interoperate cooperatively
with component(s) of the system 500a, to provide a non-
tactile interface capabilities, such as illustrated by the non-
tactile interface system of FIG. 1A.

The motion sensing device (e.g., 1000a-1, 10004-2 and/or
10004-3) is capable of detecting position as well as motion
of hands and/or portions of hands and/or other detectable
objects (e.g., a pen, a pencil, a stylus, a paintbrush, an eraser,
a virtualized tool, and/or a combination thereof), within a
region of space 510a from which it is convenient for a user
to interact with system 500a. Region 5104 can be situated in
front of, nearby, and/or surrounding system 500q. In some
embodiments, the position and motion sensing device can be
integrated directly into display device 1004a as integrated
device 1000a-2 and/or keyboard 10064 as integrated device
1000a-3. While FIG. 10A illustrates devices 1000a-1,
10004-2 and 1000a-3, it will be appreciated that these are
alternative embodiments shown in FIG. 10A for clarity sake.
Keyboard 10064 and position and motion sensing device are
representative types of “user input devices.” Other examples
of user input devices (not shown in FIG. 10A) can be used
in conjunction with computing environment 500q, such as
for example, a touch screen, light pen, mouse, track ball,
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touch pad, data glove and so forth. Accordingly, FIG. 10A
is representative of but one type of system embodiment. It
will be readily apparent to one of ordinary skill in the art that
many system types and configurations are suitable for use in
conjunction with various embodiments.

Tower 1002a and/or position and motion sensing device
and/or other elements of system 500a can implement func-
tionality to provide virtual control surface 1000a within
region 510a with which engagement gestures are sensed and
interpreted to facilitate user interactions with system 1002a.
Accordingly, objects and/or motions occurring relative to
virtual control surface 1000a within region 510a can be
afforded differing interpretations than like (and/or similar)
objects and/or motions otherwise occurring.

As illustrated in FIG. 10A control object 504 (happens to
be a pointing finger in this example) is moving toward an
“Erase” button being displayed on display 10044 by a user
desiring to select the “Erase” button. Now with reference to
FIG. 10B, control object 504 has moved triggered an
engagement gesture by means of “virtually contacting”, i.e.,
intersecting virtual control surface 1000a. At this point,
unfortunately, the user has suffered misgivings about execut-
ing an “Frase.” Since the “Erase” button has been engaged,
however, mere withdrawal of control object 504 (i.e., a
“dis-intersection”) will not undo the erase operation
selected. Accordingly, with reference to FIG. 10C, the user
makes a wiping motion with a second control object (i.e., the
user’s other hand in this example) indicating that the user
would like to cancel an operation that is underway. Motion
by a second control object illustrates a “compound gesture”
that includes two or more gestures, sequentially or simulta-
neously. Compound gestures can be performed using a
single control object, or two or more control objects (e.g.,
one hand, two hands, one stylus and one hand, etc.). In the
illustrated case, the point/select and the wipe are two ges-
tures made by two different control objects (two hands)
occurring contemporaneously. Now with reference to FIG.
10D, when the second part of the compound gesture is
recognized, the Erase button is no longer highlighted, indi-
cating that the button is now “unselected”. The user is free
to withdraw the first control object from engagement with
the virtual control surface without triggering an “Frase”
operation.

FIGS. 11A and 11B illustrate a zooming action performed
by two fingers (thumb and index finger) according to various
embodiments. These diagrams are merely an example; one
of ordinary skill in the art would recognize many other
variations, alternatives, and modifications. As illustrated by
FIG. 11A, an image 1106 (happens to be a web page feed)
is being displayed by display 1104, by a browser or other
application. To zoom in, the user commences a motion
including engaging a virtual control construct (not shown)
interposed between the user and display 1104 at an engage-
ment target approximately over the right most column being
displayed. In FIG. 11B, the finger tips 504a, 5045 of the user
are moved away from each other. This motion is recognized
by device 700 from differences in images captured of the
control object portion 504a, 5045 and determined to be an
engagement gesture including a spreading motion of the
thumb and index finger-tip in front of the screen using the
techniques described hereinabove. The result of interpreting
the engagement gesture is passed to an application (and/or to
the OS) owning the display 1104. The application owning
display 704 responds by zooming-in the image of display
1104.

FIGS. 12A and 12B show how a swiping gesture by a
finger in engaged mode may serve to scroll through screen
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content according to various embodiments. These diagrams
are merely an example; one of ordinary skill in the art would
recognize many other variations, alternatives, and modifi-
cations. As illustrated by FIG. 12A, an image 1206 (happens
to be of dogs in this example) is being displayed by display
1204. When the user commences a motion relative to and
engaged with a virtual control construct (not shown) inter-
posed between the user and display 1204 (e.g., at an engage-
ment target approximately over the left-most dog), the user’s
gesture may be interpreted as a control input for the appli-
cation displaying the images. For example, in FIG. 12B, the
user has swiped a finger-tip 504a from left to right. This
motion is recognized by device from differences in images
captured of the control object portion 504a and determined
to be an engagement gesture including a swiping motion
from left to right that pierces the virtual control construct
using the techniques described hereinabove. The result of
interpreting the engagement gesture is passed to the image
application, which responds by scrolling the image on the
display 1204. On the other hand, the same gesture performed
without engaging the virtual control construct may be passed
to the operating system and, for example, used to switch the
display 1204 between multiple desktops or trigger some
other higher-level function. This is just one example of how
engagement gestures, i.e., gestures performed relative to a
virtual control construct (whether in the engaged or the
disengaged mode, or changing between the modes), can be
used to provide different types of control input.

FIGS. 13A and 13B show how the motion of a control
object in free space in conjunction with a virtual plane (or a
slice of a certain thickness) can provide writing with a
virtual pen onto a virtual paper defined in space according to
various embodiments. These diagrams are merely an
example; one of ordinary skill in the art would recognize
many other variations, alternatives, and modifications. As
shown in FIG. 13A, a user moves a tool 5045 (happens to be
a stylus) in free space in front of a writing area being
displayed on the screen of display 1304 so as to pierce a
virtual control construct (not shown) (happens to be a plane)
interposed between the user and display 1304. This motion
is recognized by device 1300 from differences in images
captured of the control object portion 5045 and determined
to be an engagement gesture including placing a virtual pen
onto a virtual paper of space, and is reflected by the contents
of display 1304. Continuing motion of the stylus 50454 in
space by the user after engaging the virtual control plane is
interpreted as writing with the stylus 5044 on the virtual
paper of space and is reflected by the contents of display
1304. As shown in FIG. 13B, when the user dis-engages
with the virtual control construct, the virtual pen is lifted
from the virtual paper, completing the letter “D” in script
matching the handwriting of the user in free space. Accord-
ingly, embodiments can enable, e.g., signature capture,
free-hand drawings, etc.

The above-described 3D user-interaction technique
enables the user to intuitively control and manipulate the
electronic device and virtual objects by simply performing
body gestures. Because the gesture-recognition system
facilitates rendering of reconstructed 3D images of the
gestures with high detection sensitivity, dynamic user inter-
actions for display control are achieved in real time without
excessive computational complexity. For example, the user
can dynamically control the relationship between his actual
movement and the corresponding action displayed on the
screen. In addition, the device may display an on-screen
indicator to reflect a degree of completion of the user’s
gesture in real time. Accordingly, embodiments can enable
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the user to dynamically interact with virtual objects dis-
played on the screen and advantageously enhances the
realism of the virtual environment.

The terms and expressions employed herein are used as
terms and expressions of description and not of limitation,
and there is no intention, in the use of such terms and
expressions, of excluding any equivalents of the features
shown and described or portions thereof. In addition, having
described certain embodiments, it will be apparent to those
of ordinary skill in the art that other embodiments incorpo-
rating the concepts disclosed herein may be used without
undue experimentation. Accordingly, the described embodi-
ments are to be considered in all respects as only illustrative
and not restrictive.

What is claimed is:

1. A method of controlling a machine, comprising:

sensing a variation of position of at least one control

object using an imaging system;
determining from the variation one or more primitives
describing at least one of motion made in space by the
control object and character of the control object;

comparing the one or more primitives to one or more
templates in a library of gesture templates;

selecting from a result of the comparing a set of templates

of possible gestures corresponding to the one or more
primitives; and

providing at least one of the set of templates of possible

gestures as an indication of a command to issue to a
machine under control responsive to the variation.

2. A method according to claim 1, wherein the sensing a
variation of position of at least one control object using an
imaging system comprises:

capturing a plurality of temporally sequential images of at

least one control object manipulated by the user.

3. A method according to claim 2, wherein the determin-
ing from the variation one or more primitives describing at
least one of motion made by the control object and character
of the control object comprises:

computationally analyzing the images of the at least one

control object to recognize a gesture primitive includ-
ing at least a portion of a trajectory (trajectory portion)
describing motion made by the control object.

4. A method according to claim 3, wherein the computa-
tionally analyzing the images of the at least one control
object to recognize a gesture primitive comprises:

identifying a scale associated therewith, the scale being

indicative of an actual distance traversed by the control
object; and

computationally determining a ratio between the scale and

a displayed movement corresponding to an action to be
displayed on a presentation device;

displaying the action on the device based on the ratio; and

adjusting the ratio based on an external parameter.

5. The method according to claim 4, wherein the scale is
identified by comparing the recognized gesture with records
in a gesture database, the gesture database comprising a
series of electronically stored records each relating a gesture
to an input parameter.

6. The method according to claim 5, wherein the gestures
are stored in the records as vectors.

7. The method according to claim 4, wherein the external
parameter is the actual gesture distance.

8. The method according to claim 4, wherein the external
parameter is a ratio of a pixel distance in the captured images
corresponding to performance of the gesture to a size, in
pixels, of the display screen.

10

15

20

25

30

35

40

45

50

55

60

65

44

9. The method according to claim 3, wherein analyzing
the images of the at least one control object comprises (i)
identifying a shape and position of the at least one control
object in the images and (ii) reconstructing the position and
the shape of the at least one control object in 3D space based
on correlations between the identified shapes and positions
of the at least one control object in the images.

10. The method according to claim 9, further comprising
defining a 3D model of the at least one control object and
reconstructing the position and shape of the at least one
control object in 3D space based on the 3D model.

11. The method according to claim 9, wherein analyzing
the images of the at least one control object further com-
prises temporally combining the reconstructed positions and
shapes of the at least one control object in 3D space.

12. A method according to claim 1, wherein comparing
the one or more primitives to one or more templates in a
library of gesture templates comprises:

disassembling at least a portion of a trajectory into a set

of frequency components; and

searching for the set of frequency components among the

template(s) stored in the library.

13. A method according to claim 12, wherein disassem-
bling at least a portion of a trajectory into a set of frequency
components comprises:

applying Fourier analysis to the trajectory portion as a

signal over time to determine the set of frequency
components.

14. A method according to claim 1, wherein comparing
the one or more primitives to one or more templates in a
library of gesture templates comprises:

disassembling at least a portion of a trajectory into a set

of frequency components;

fitting a set of one or more functions to a set of frequency

components representing at least a portion of a trajec-
tory; and

searching for the set of functions among the template(s)

stored in the library.

15. A method according to claim 14, wherein fitting a set
of one or more functions to a set of frequency components
representing at least a portion of a trajectory comprises:

fitting Gaussian function to the set of frequency compo-

nents.

16. A method according to claim 1, wherein comparing
the one or more primitives to one or more templates in a
library of gesture templates comprises:

disassembling at least a portion of a trajectory into a set

of time dependent frequency components; and
searching for the set of time dependent frequency com-
ponents among the template(s) stored in the library.

17. A method according to claim 16, wherein disassem-
bling at least a portion of a trajectory into a set of time
dependent frequency components comprises:

applying wavelet analysis to the trajectory portion as a

signal over time to determine the set of time dependent
frequency components.

18. A method according to claim 1, wherein comparing
the one or more primitives to one or more templates in a
library of gesture templates comprises:

distorting at least a portion of a trajectory based at least in

part upon frequency of motion components; and
searching for the distorted trajectory among the
template(s) stored in the library.

19. A method according to claim 1, wherein selecting
from a result of the comparing a set of templates of possible
gestures corresponding to the one or more primitives com-
prises:
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determining a similarity between the one or more primi-
tives and the set of templates by applying at least one
similarity determiner; and

providing the similarity as an indication of quality of

correspondence between the one or more primitives
and the set of templates.

20. A method according to claim 19, wherein determining
a similarity between the one or more primitives and the set
of templates by applying at least one similarity determiner
comprises:

applying at least one of a correlation, a convolution, and

a dot product.

21. A method according to claim 19, wherein selecting
from a result of the comparing a set of templates of possible
gestures corresponding to the one or more primitives further
comprises:

performing at least one of scaling and shifting to at least

one of the one or more primitives and the set of
templates.

22. A method according to claim 1, wherein selecting
from a result of the comparing a set of templates of possible
gestures corresponding to the one or more primitives com-
prises:

disassembling at least a portion of a trajectory into a set

of frequency components;

filtering set of frequency components to remove motions

associated with jitter; and

searching for the set of filtered set of frequency compo-

nents among the template(s) stored in the library.

23. A method according to claim 22, wherein filtering set
of frequency components comprises:

applying a Frenet-Serret filter.

24. The method according to claim 1, wherein the at least
one control object comprises a body part of a user.

25. The method according to claim 1, wherein determin-
ing from the variation one or more primitives describing at
least one of motion made by the control object and character
of the control object comprises determining a position or
motion of the at least one control object relative to a virtual
control construct.

26. A method according to claim 1, the method further
comprising:

computationally determining a degree of completion of at

least one gesture; and

modifying contents of a display in accordance with the

determined degree of completion.

27. The method according to claim 26, further comprising
comparing the degree of completion to a threshold value;
and indicating a command to be performed upon the degree
of completion.

28. The method according to claim 26, wherein the
contents comprise an icon, a bar, a color gradient, or a color
brightness.

29. The method according to claim 26, further comprising
displaying an action responsive to the gesture in accordance
with a physics simulation model and based on the degree of
gesture completion.

30. The method according to claim 29, wherein the
displayed action is further based on a motion model.

31. The method according to claim 30, wherein the
motion model is constructed based on at least one of a
simulated physical force, gravity, or a friction force.

32. A method according to claim 1, the method further
comprising:

computationally determining a dominant gesture; and

presenting an action on a presentation device based on the

dominant gesture.
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33. The method according to claim 32, wherein the
dominant gesture is determined by filtering the plurality of
gestures.
34. The method according to claim 32, wherein each of
the gestures is computationally represented as a trajectory.
35. The method according to claim 34, wherein each
trajectory is computationally represented as a vector along
six Euler degrees of freedom in Euler space, the vector
having a largest magnitude being determined to be the
dominant gesture.
36. A method according to claim 1, wherein providing at
least one of the set of templates of possible gestures as an
indication of a command to issue to a machine under control
responsive to the variation comprises:
filtering one or more gestures based at least in part upon
one or more characteristics to determine a set of
gestures of interest; and
providing the set of gestures of interest.
37. The method according to claim 36, wherein the
characteristics comprise a configuration, shape, or disposi-
tion of an object making the gesture.
38. The method according to claim 36, wherein gestures
are associated with primitives in a data structure.
39. The method according to claim 36, further comprising
providing gestures of interest via an API.
40. The method according to claim 1, wherein providing
at least one of the set of templates of possible gestures as an
indication of a command to issue to a machine under control
responsive to the variation further comprises:
detecting a conflict between a template corresponding to
a user-defined gesture and a template corresponding to
a predetermined gesture; and
applying a resolution determiner to resolve the conflict.
41. The method according to claim 40, wherein applying
a resolution determiner to resolve the conflict comprises:
ignoring a predetermined gesture when the conflict is
between a predetermined gesture and a user-defined
gesture.
42. The method according to claim 40, wherein applying
a resolution determiner to resolve the conflict comprises:
providing a user-defined gesture when the conflict is
between a predetermined gesture and a user-defined
gesture.
43. A system enabling dynamic user interactions with a
device having a display screen, the system comprising:
at least one camera oriented toward a field of view;
at least one source of direct illumination onto at least one
control object in the field of view;
a gesture database comprising a series of electronically
stored records, each of the records relating a gesture to
an input parameter; and
an image analyzer coupled to the camera and the database
and configured to:
operate the camera to capture a plurality of temporally
sequential images of the at least one control object;

analyze the images of the at least one control object to
recognize a gesture performed by the user;

compare the recognized gesture with records in the
gesture database to identify an input parameter asso-
ciated therewith, the input parameter corresponding
to an action for display on the display screen in
accordance with a ratio between an actual gesture
distance traversed in performance of the gesture and
a displayed movement corresponding to the action;
and

adjust the ratio based on an external parameter.
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